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Abstract

We study technology adoption in a dynamic model of price competi-
tion. Adoption involves disruption costs and learning by doing. Be-
cause of disruption costs, the adopting firm begins in a market dis-
advantage, which may persist if its rival captures the buyers it needs
to learn the technology. The prospect of future rents by the rival re-
sults in: (i) a failure to adopt Pareto superior technologies; (ii) an
equilibrium preference for the choice of technologies with smaller (dis-
counted) social value but flow payoffs that are received earlier in time;
(iii) more technologies being adopted as the adopting firm is exposed
to more competition.
JEL: L10, O30.
Keywords: Technology adoption, adoption breakdowns, triangular ar-
rays, dynamic competition, endogenous impatience.

1. Introduction

The adoption of new technologies is at the center of productivity growth in
many industrial sectors. In most of these industries, however, the nature of
the adoption process affects the competitive position of firms, creating losses
as well as gains. Consider, for instance, the following story (see also Holmes,
Levine, and Schmitz, 2012). Airbus and Boeing compete intensively in the
aerospace industry by introducing innovations and improvements to their
technologies. In building its 787 Dreamliner, Boeing chose a new process
which ended up having major adaptation problems. As a result of the im-
portant delays in promised delivery dates, Airbus had a great opportunity to
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win a larger market share. But Airbus itself had also faced similar problems
in the construction of the twin-deck A380. Indeed, these difficulties finished
with a management reorganization in 2006 and more than 6 billion in losses.1

This article develops a simple model of technology adoption with two
distinctive features. First, adoption involves switchover disruption costs: the
firm adopting the technology becomes initially less productive than non-
adopters. Second, adoption entails learning by doing: the more the firm uses
the technology, the more productive it gets.

The key observation of this article is that, upon adoption, non-adopting
firms have incentives to undercut prices to prevent the learning of the new
technology—as this makes the adopting firm a weaker competitor. The ex-
pectation of future rents by non-adopters places a pecuniary cost on the
adopting firm that, in some cases, renders the adoption of Pareto superior
technologies unprofitable. In other words, as ‘stealing’ current buyers from
the adopting firm creates future rents without adding any social value, buyers
become an artificially overpriced ‘commodity’ in the market. This overpricing
may render adoption unprofitable.

This article studies these issues in a dynamic duopoly model of price
competition in which the adopting firm has a limited amount of time to
learn the new technology. This time limit may come from the threat of
imitation, the expiration of a patent, etc. In the model, firms offer potentially
differentiated products to a sequence of short-lived buyers with unit demand.
The main advantage of this setting with respect to others, i.e. a Cournot
model of competition, is that it isolates the dynamics of adoption by assuming
away static equilibrium distortions.

Within this framework, we first confirm formally that, in some cases, the
adopting firm prefers to stick to an old technology rather than to switch to a
better one. Second, we show that, for the cases of interest, between two tech-
nologies with the same (discounted) social value, the adopting firm prefers
the technology whose flow payoffs are received earlier. This equilibrium bias
towards technologies with greater present payoffs is called the impatience
property. Third, we prove that the bias embedded in the impatience prop-
erty favors the adoption of technologies with smaller social value but flow
payoffs that are delivered earlier in time.

1See ‘Boeing is expected to disclose further delays in the production of the 787’ (New
York Times, January 16, 2008), ‘Supplier problems lead to new delay of Boeing 787’ (New
York Times, January 17, 2008), and ‘Airbus unveils jet and broadens rivalry with Boeing’
(New York Times, June 14, 2013).
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The relevance of disruption costs in the introduction of products and
processes is well-known in the management literature. Tyre and Hauptman
(1992) list among their main causes the novelty of technical features, the low
applicability of previous knowledge, and the incompatibility of current or-
ganizational practices with the arriving innovation.2 Leonard-Barton (1988)
shows that the adaptation of a technology often requires active cooperation
between users and developers. Our model accommodates some of these fea-
tures. Disruption costs may come not only from higher production costs but
also from a lower valuation of the new good. In this case, trade between
the buyers and the adopting firm improves the product, becoming a form of
‘cooperation.’

Holmes et al. (2012) also study adoption in the presence of switchover
disruptions. Their article contains an excellent discussion of the importance
of disruption costs in a number of innovation episodes. Using an Arrow-type
model, they show that a more competitive environment favors adoption as
the cost of adopting a technology is the forgone profits during the disruption
period.3 Our insight is different as we stress that disruption costs open a
future profit opportunity to competing firms. In an extension of our model,
we also prove that, for some parameter values, adding non-adopting firms
promotes adoption. But while in Holmes et al.’s article competition is bene-
ficial because it reduces the forgone profits of the adopting firm, in our case
it is so because it diminishes the rents of non-adopters.

In the industrial organization literature, dynamic price competition and
learning by doing have been explored by Cabral and Riordan (1994) and,
more recently, by Besanko, Doraszelski, Kryukov, and Satterthwaite (2010).
The goal of these articles is to understand how learning by doing, jointly with
organizational forgetting in Besanko et al.’s article, determines pricing and
market dominance in a duopolistic setting. Schivardi and Schneider (2008)
examine a dynamic investment game with learning and disruptive adoption.
Their analysis, however, resembles a multi-stage patent race in which the
adopting firm learns the potential of a new technology in a Bayesian fashion.

Somewhat related to our work is Bergemann and Välimäki (2006), which
studies the efficiency of price competition in a general dynamic framework.

2They also show that firms face significant disruption costs despite efforts in problem-
solving prior to the introduction of technologies.

3Arrow (1962) was the first to compare adoption incentives under perfect competition
and monopoly. However, in Arrow’s article and in the literature that follows, for example
Gilbert and Newbery (1982), there is neither learning or disruption costs.
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Our focus here is narrower and more applied. In particular, we are concerned
with the adoption of better technologies in a specific dynamic setting—one
in which the adopting firm suffers from disruption costs and the adopted
technology gets better through learning by doing.

Our work is also related to a list of macro articles in which learning
and disruption costs are at the center of the stage. In perfectly competitive
environments, Chari and Hopenhayn (1991) and Parente (1994) examine
adoption when the implementation of a technology entails losing previously
acquired knowledge. Jovanovic and Nyarko (1996) add to this literature by
studying the full dynamics of technology adoption in a one-agent Bayesian
model of learning by doing. Klenow (1998) examines a firm’s decision of
when to update a process technology. In contrast to these articles, we study
adoption in a strategic setting and exploit the idea that disruption costs are
a source of future rents to non-adopters. This is the key distinctive feature
of our work.

The remainder of this article is organized as follows. Section 2 presents
the model. Sections 3 and 4 introduce some basic concepts and useful pre-
liminary findings. Section 5 presents our main results. Section 6 extends
our analysis in two directions: First, we consider the effect that adding more
firms has on adoption; Second, we study a continuous-time version of our
model that approximates arbitrarily well an economy with a continuum of
buyers. Section 7 concludes. Proofs are collected in Appendix A.

2. The model

We consider a quasi-linear utility economy with two sellers, denoted by i ∈
{1, 2}, and T + 1 buyers with unit demand. We write vi for the buyers’
valuation of a purchase from seller i and ci for seller i’s unit cost. With
si ≡ vi − ci > 0 we denote the bounded flow surplus that is created when a
buyer trades with seller i. Trading takes place over time: at each date only
one short-lived buyer is available to trade with the sellers. Time is denoted
by t ∈ T ≡ {0, ..., T}. Sellers discount the future with a discount factor
δ = 1. We defer to Section 6 the extension of our model to: (i) an economy
with more than two sellers; and (ii) an economy with an infinite number of
buyers.
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Technologies and efficiency. For clarity and to ease the exposition, we assume
that only the first seller, seller 1, has the option of adopting a technology.4 For
our purpose, a technology is completely specified by a function that associates
cumulative sales up to the beginning of period t, x, with the surplus that
can be created at that date if trade occurs. Formally, s : X −→ [s, s̄], where
X ≡ {0, ..., T} and 0 < s < s̄ < +∞. Any technology fulfills:

s(0) ≤ s2, (A1)

s(x+ 1) ≥ s(x). (A2)

The first assumption captures the notion of switchover disruption costs: at
least the first sale made with a technology creates a weakly smaller flow
surplus than the one created by seller 2. The second inequality represents
learning by doing. We also assume that the socially efficient allocation re-
quires the adoption of the technology. Formally, there is a minimum number
of cumulative sales q in X such that the social value of the technology up to
date q is nonnegative:

q∑
x=0

s(x)− (q + 1) max
i
{si} − ε ≥ 0, (A3)

where ε ≥ 0 is a sunk cost incurred at adoption.5

Our aim is to understand adoption decisions for a whole class of technolo-
gies: the set S of all functions s satisfying Assumptions A1–A3. Note that,
for efficiency, every technology in S should be adopted at the initial date and
trade should take place at each date using the adopted technology.6

Actions and payoffs. Adoption occurs within the framework of the following
extensive-form game: at the beginning of each date, seller 1 decides whether

4Seller 1 might be either the ‘incumbent,’ i.e. s1 ≥ s2, or the ‘entrant.’ Our results
generalize easily to the case in which both sellers may adopt the technology.

5With quasi-linearity and no lower bound in the supply of the money good an allocation
is Pareto optimal if, and only if, it maximizes the sum of utilities. Assuming that there
is a q in X such that the social value of the technology up to date q is nonnegative is the
same as saying that the sum of all individual utilities is weakly higher with adoption than
without it.

6In our economy, with infinitely inelastic demand curves, there is no room for static
trade distortions. Hence, even if learning stops after seller 1 achieves q sales, allocative
efficiency requires assigning all buyers to him.
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or not to replace the old technology s1 with a given s in S. The choice is
irreversible. Then, the sellers simultaneously announce their (flow) surplus
offers to the buyer: bi ∈ R.7 The buyer then decides whether or not to
buy from one of the sellers. The game continues this way until the last date
is reached. The sellers have complete information about the history of the
game.

Payoffs are as follows. Each buyer obtains either a zero payoff if trade
does not take place or a payoff equal to bi, the surplus offered by his trading
partner. Seller i, at date t, receives a payoff either equal to zero if he does
not trade, or equal to si − bi if he trades. For the sellers, total payoffs equal
the sum of their flow payoffs.

Example 1. Let T = 1, v1 = v2 = 1, and c1 = c2 = 0.5. Suppose that the
technology lets seller 1 produce a second unit at 0.1 after producing the first
at 0.75. Seller 2 is willing to sell the first unit at 0.25, since then he may
charge 0.75 for the second. That is, he would offer up to 1− 0.25 = 0.75 to
the first buyer. Therefore, there is no adoption because seller 1 never offers
more than 0.65 (i.e. charges less than 0.35).

Strategies and equilibrium. We describe here the strategies and the equilib-
rium concept for the sub-game that follows once a technology is adopted.
Extending these to the entire game is straightforward but tedious. Besides,
it would bring information of little use. As solution concept we use pure-
strategy Markov perfect equilibrium (MPE for short) with x as the state
variable. A state x in X is feasible if, for any t in T, 0 ≤ x ≤ t. The history
of the game at the beginning of date t, ht, is the sequence of actions chosen
by buyers and sellers before date t. Let Ht be the set of all possible histories
at the beginning of date t and H ≡ ∪t∈THt the set of all possible histories of
the game with typical element h. A pure strategy for seller i is a mapping
bi(·) : H → R. A strategy bi(·) is Markov if for each feasible state x and
histories h, h′ ∈ H of the same length, then bi(h, x) = bi(h

′, x). In words,
two different histories leading to the same x may only influence the behavior
of the sellers through the date, t, at which x is attained. A Markov strategy
for seller i is written as bi(x, t) and, for short, we call the pair (x, t), with x
feasible, a state. A Markov perfect equilibrium is a sub-game perfect equi-
librium in which the sellers use Markov strategies (see Maskin and Tirole,

7R is the set of real numbers. For tractability, we focus directly on surplus-money offers
rather than on prices.
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2001).

3. Definitions

The functions we introduce here play a key role in our equilibrium analysis.
We begin by displaying the incremental flow surplus, at each state (x, t), for
a generic technology s adopted at t′ ≤ t. As the incremental flow surplus that
s yields at (x, t) is independent of t, we denote it by π(x) ≡ s(x)− s2. Note
that |π(x)| equals the Nash equilibrium payoff that seller 1 (seller 2) would
obtain in a one-shot Bertrand game if π(x) > 0 (π(x) < 0).8 Observe also
that Assumption A2 implies that π(x) is non-decreasing in x. We arrange
these quantities in the triangular array A:

π(T )
π(T − 1) π(T − 1)

...
...

. . .

π(1) π(1) . . . π(1)
π(0) π(0) . . . π(0) π(0),

where rows count cumulative sales and columns count periods (both running
backwards). For any state (x, t), Ax,t is the triangular sub-array whose last
entry is in row T + 1− x and column T + 1− t.

Definition 1 (d, r, and z). Define functions d, r, and z on {(x, t) ∈ X×T :
x ≤ t} as follows: For any state (x, t), let d(x, t) be the summation over the
(outer) diagonal of Ax,t, let r(x, t) be the negative of the summation over the
last row of Ax,t, and let z(x, t) be the sum of all entries of Ax,t.

The incremental surplus d(x, t) can be written as:

d(x, t) =
T−t∑
k=0

[s(x+ k)−max
i
{si}] +K(t),

where K(t) ≡ (T + 1 − t)(maxi{si} − s2) is the equilibrium (continuation)
payoff of the first seller without adoption.9 (In what follows, let K be seller
1’s reservation payoff at t = 0, K(0), to lighten the notation.)

8In this equilibrium sellers do not use weakly dominated strategies.
9The payoff in the Nash equilibrium in which both sellers offer min{s1, s2} at each date.
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Two observations are in order. First, Assumption A3 implies d(0, 0) −
ε ≥ K, yet d(x, t) may be either smaller than K(t) or even negative if the
remaining buyers cannot accommodate q sales. As a result, function z may
take positive as well as negative values. Second, function z displays a sign
preserving property: if z(x, t) is positive then z(x+ 1, t+ 1) is also positive.
Similarly, if z(x, t) is negative so is z(x, t+ 1).

4. Preliminary results

We begin this section by studying the dynamic competition sub-game that
follows once a technology is adopted. We proceed then to characterize the
adoption decision.

Lemma 1. In a MPE, b1(x, t) = b2(x, t) ≥ 0.

Lemma 1 says two things. First, that in a MPE trade takes place at
each date. Trade would not happen only if the maximum surplus offered
to the corresponding buyer were negative. But then, as the flow surplus of
each seller is bounded away from zero, a seller could deviate profitably and
sell. Second, that in a MPE the buyer must be indifferent between the two
offers; otherwise, the active seller could decrease the surplus he concedes to
the buyer and increase his payoff.

In what follows, we focus attention on cautious MPE. In a cautious
MPE (to ease notation, still MPE), the non-trading seller must be, at each
state, indifferent between selling or not to the current buyer (see Berge-
mann and Välimäki, 2006). Recalling that for a real-valued function f ,
f+(a) ≡ max{f(a), 0} and f−(a) ≡ −min{f(a), 0}, we give:

Theorem 1 (Equilibrium payoffs). There is a unique MPE. In this equilib-
rium the payoffs of the sellers are:

π1(x, t) = min {d+(x, t), z+(x, t)}, (1)

π2(x, t) = min {r+(x, t), z−(x, t)}. (2)

Theorem 1 provides an algorithm that resolves the intricacies of the dy-
namic competition game in a simple way. In particular, it shows that, for
any state (x, t), it suffices to sum all flow surpluses in the corresponding tri-
angular sub-array, i.e. to compute z(x, t), to single out the trading seller.
The following observations throw light on the result. First, each seller ob-
tains a non-negative payoff since he can always offer nothing. Thus, when

8



the payoff of a seller is positive, his rival’s payoff must be zero. For exam-
ple, if z+(x, t) = z(x, t), then π2(x, t) = z−(x, t) = 0. Second, payoffs are
sign monotone: if π1(x, t) is positive, then π1(x + 1, t + 1) is also positive.
Similarly, if π2(x, t) is positive so is π2(x, t + 1). This property is inherited
directly from the sign preserving property of function z. We further interpret
and use these implications below.

Corollary 1 (Monotonicity). In the unique MPE, if a seller sells at date t,
then he makes all subsequent sales.

One way to get intuition on Corollary 1 is to note that for any technology
there is a minimal x̂ ≤ q such that s(x) ≥ s2 for all x ≥ x̂. If x ≥ x̂, the
result is obvious. The cases in which cumulative sales have not yet attained
threshold x̂ are more involved, but, in essence, a seller will sell at date t only
if he obtains a positive payoff. Then, as payoffs are sign monotone, his payoff
from selling the next date will also be positive. Corollary 1 and Theorem 1
together yield:

Lemma 2 (No delay). For the unique MPE, adoption takes place only at the
initial date.

Lemma 2 says that adoption takes place without delay. The intuition is
simple. When adoption occurs, the first seller, independently of the selected
adoption date, receives full compensation of his reservation payoff. Hence,
he does not get any benefit, and indeed loses money, from delaying adoption
because the number of profitable trades may only diminish.

Corollary 1 and Lemma 2 have two important implications. First, adopted
technologies attain their maximum social value. Second, the maximum adop-
tion payoff is π1(0, 0)− ε. Therefore, the MPE is efficient if, and only if, the
set S∗ of technologies adopted in equilibrium fulfills:

S∗ = S.

Equivalently, the MPE is efficient if, and only if, π1(0, 0) − ε ≥ K for every
technology in S. Our next result identifies a sufficient condition for effi-
ciency.10

Proposition 1 (Efficient adoption). With zero switchover disruption costs,
the unique MPE is efficient.

10To ease the exposition, in what follows, we abuse our terminology and refer directly
to the efficiency properties of the MPE.
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Without switchover disruption costs, efficiency ensues because the first
seller gets, at least, the social value of the technology (i.e. equation (A3)
with q = T ). Formally, all entries in the triangular array A are non-negative
without switchover disruption costs and, as a result, z(0, 0) ≥ d(0, 0) ≥ ε+K.
Theorem 1 implies then that π1(0, 0) = d(0, 0) for every technology in S.

To fully appropriate the incremental surplus of the technology, the first
seller must obtain, at each date t, a flow payoff equal to s(t) − s2. That is,
the maximum surplus that seller 2 offers to the buyer must equal his flow
surplus at each date. This ‘bidding’ behavior reflects the fact that, without
switchover disruption costs, the continuation payoff of seller 2 is always zero
as he cannot gain any market power.

5. Main results

This section contains our key findings. They come in two groups. First, we
show that some efficient technologies are not adopted. Second, we describe
the most distinctive features of these technologies.

5.A. Adoption breakdowns

To ease the exposition, we define the subset N of technologies as:

N ≡ {s ∈ S : z(0, 0) < ε+K}.

Clearly, set N is non-empty and is contained in S (see Figure 1). Our first
key result generalizes the outcome of Example 1:

Proposition 2 (Adoption breakdown). The unique MPE is inefficient:

S∗ = S− N.

Proposition 2 says that technologies in set N are not adopted. That is,
the maximum adoption payoff π1(0, 0) − ε is smaller than the reservation
payoff for every technology s in N. Note that this is true even in the extreme
case of a zero sunk cost, i.e. if ε is zero.

Our game is not a mere sequence of independent one-shot Bertrand games
because a sale made by seller 1 improves his strategic position against seller
2 and vice versa. Both sellers are, in principle, willing to offer more than
the flow surplus to the current buyer. How much do they offer depends, of
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Figure 1: Sets N and S−N of technologies with non-negative costs in Example 1,
if ε = 0.

course, on the return they expect from the improved strategic position. In
our cautious equilibrium this means that the trading seller offers precisely
his rival’s valuation of an extra sale. The following proposition is meant to
clarify this point and thus to improve our understanding of Proposition 2.

Proposition 3 (Recursive payoffs). In the unique MPE, payoffs obtain re-
cursively from:

π1(x, t) = max

d(x, t)−
T−(t+1)∑
k=0

π2(x+ k, t+ 1 + k), 0

 ,

π2(x, t) = max

r(x, t)−
T−(t+1)∑
k=0

π1(x+ 1, t+ 1 + k), 0

 ,

where πi(·, T ) = max {(−1)i−1π(·), 0} for i ∈ {1, 2}.

Corollary 1 and Lemma 2 tell us we may observe one of two possible
paths in equilibrium. Suppose that seller 1 adopts the technology—and sells
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at each date. Function d(t, t) (from T to R) gives the payoff of seller 1 if
seller 2 plays at each date his one-shot Bertrand best response, i.e. if he
offers at each date a surplus equal to s2. Function d(t, t) is thus an upper
bound for the equilibrium payoff of seller 1. At each date, however, seller 2
may be tempted to deviate by offering more than s2 to the current buyer. In
fact, he would be willing to offer, at most:

u(t, t) ≡ s2 + π2(t, t+ 1). (3)

That is, he would be willing to offer not only the buyer’s intrinsic alternative
social value, s2, but also the continuation payoff he would earn from deviating
at date t. Proposition 3 says that seller 1 must transfer to each buyer t in T
a surplus equal to u(t, t) to preclude deviations from the equilibrium path.

Therefore, the payoff function of seller 1 is just the incremental surplus of
the technology minus the sum of the money payments he must transfer to the
buyers to prevent deviations from the equilibrium path. If the total amount
to be transferred is greater than the maximum appropriable rents, then the
technology is not adopted—and the payoff from the dynamic competition
game is zero for the first seller. A parallel argument explains the second
equation in Proposition 3, i.e. the payoff function of the second seller.

Less formally, as ‘stealing’ buyers from the first seller prevents the learning
of the technology and improves the future market position of seller 2, buyers
become an artificially overpriced ‘commodity’ in the market. Indeed, the
mechanics of the equilibrium resemble the workings of a second price auction
in which, to move forward in his preferred direction, seller 1 must transfer
to each buyer a flow surplus equal to the valuation u(t, t) of his rival. It
is ultimately this social overpricing of buyers what renders the adoption of
better technologies unprofitable.

This also clarifies a key conceptual point. The root of the adoption fail-
ure is not the resistance of potential losers, but the market gains that non-
adopters could obtain after adoption takes place. This is further highlighted
in the next remark.

Remark 1. The adoption of a new technology may let seller 2 appropriate
rents he could not appropriate otherwise. Consider Example 1. Following
adoption, the second seller earns a payoff of 0.1, yet he makes zero profits
without adoption. With zero sunk costs, this implies a transfer of wealth
to seller 2, who benefits from the new situation without adding any social
value. Moving one step backwards, we see these new rents constitute a form
of resistance to adoption.
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5.B. Endogenous impatience

The previous results lead us to question how can we tell adopted from non-
adopted technologies apart. One might think that the distinctive feature of
adopted technologies is a large social value. And although, as we shall see,
this is not true in general, technologies with a sufficiently high social value
are adopted. Formally, define the subset G of technologies as:

G ≡ {s ∈ S : d(0, 0) ≥ (ε+K) +Ms},

where Ms ≡ 1
2
T (T + 1)|π(0)|. (Set G is the triangle above the dashed line in

Figure 1.) Then, we have the following result:

Proposition 4. In the unique MPE, every technology in set G is adopted.

For technologies outside G the social value rule is insufficient to decide
whether adoption takes place. In particular, the inter-temporal distribution
of the social value becomes crucial because technologies with larger early flow
surpluses give higher adoption payoffs.

Example 2. Let ε = 0 and consider two technologies, s and s′, with trian-
gular arrays:

1.25
0.75 0.75
−0.75 −0.75 −0.75,

2
0 0

−0.75 −0.75 −0.75.

Although both technologies have the same incremental surplus d(0, 0) =
d′(0, 0) and switchover disruption costs π(0) = π′(0), it follows from Theo-
rem 1 that π1(0, 0) = 0.5, whereas π′1(0, 0) = 0.

To convey this idea formally we use a few more concepts. First, we
say that technologies s and s′ are surplus equivalent if, and only if, they
have equal incremental surpluses. We denote by [s] the equivalence class of
technology s, that is, [s] ≡ {s′ ∈ S : d′(0, 0) = d(0, 0)}. Second, consider
any technology s′ in [s] such that π(0) = π′(0). We say that s is learned
faster than s′ during k sales if there is an x ∈ X such that π(x) ≥ π′(x),
π(x+1) ≥ π′(x+1),...,π(x+k) ≥ π′(x+k), with at least one strict inequality.
Finally, we say that s is learned earlier than s′, s � s′, if s is learned faster
than s′ during the first k sales and s′ is learned faster than s during the

13
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Figure 2: Two surplus equivalent technologies: technology s′ (red) yields zero
profits; technology s (black) is learned earlier and yields a positive payoff.

remaining T−k sales. Geometrically s � s′ if technology s′ crosses technology
s at most once from below (see Figure 2).11

Proposition 5 (The impatience property). Let s � s′. Then, seller 1’s
payoff π1(0, 0) with technology s is weakly higher than his payoff π′1(0, 0) with
technology s′.

The result shows that the total money payments that seller 1 must trans-
fer to the buyers diminish as the technology is learned earlier. The proposi-
tion generalizes the following intuition.

Consider a technology and perturb it by shifting a unit of surplus from
the last date to date one. The cost of this perturbation is to reduce the last
date surplus in a unit—a static cost of one unit. The benefit is, however,
twofold. First, it increases the date one surplus in a unit. This static benefit
just compensates the static cost, leaving the social value of the perturbed
technology unchanged. Second, and key to the result, it (weakly) decreases
the money payment that seller 1 must transfer to the date-1 buyer. This
dynamic benefit ensues because, as seller 1 becomes more efficient at date
one, the continuation payoff that seller 2 would earn from selling to the date-1
buyer diminishes.

There is indeed a more general illustration of the impatience embedded
in equilibrium payoffs, though less clear-cut than the impatience property.

11Ignoring the point (0, π(0)).
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The idea comes from understanding function z as a discounted sum of flow
profits. For this purpose we write:

1

T + 1
z(0, 0) =

T∑
t=0

δt π(t), (4)

where δt ≡ 1 − (T + 1)−1t is read as an endogenously determined discount
factor. The rule says that a technology is adopted only if the discounted value
in (4) is weakly higher than K + ε. However, efficiency is measured by the
non-discounted sum of flow profits (A3). As we have seen, this endogenous
discounting has two consequences: first, a positive social value is not enough
for adoption; second, technologies whose payoffs are received earlier have
more chances of being adopted. These are neatly exemplified in Figure 1,
where equivalence classes [s] are parallel straight lines of slope −1. There,
all classes below the dashed line can be partitioned into two convex subsets
of adopted, and not adopted, technologies. A third consequence can be
glimpsed from Proposition 5:

Proposition 6 (Inefficient choice). For any technology s in N with positive
social value, there is another technology s′ in S∗ with a smaller social value.

The result shows that, if the first seller could choose between technologies,
the present bias embedded in the impatience property may favor the adoption
of technologies with smaller but ‘better’ inter-temporally distributed social
value.

6. Extensions

The extensions that follow consider the effects of adding either more sellers or
an unboundedly large number of buyers. A combination of both extensions
should then come easily.

6.A. Adding more sellers

In this subsection we add a third seller to our model, but the reader shall be
convinced that adding two or more sellers is straightforward. To be sure we
make legitimate comparisons across models, we keep the set S of technologies
fixed. For this purpose, recall that a third seller with flow surplus s3 fulfills
Assumptions A1 and A3 for all s in S if, and only if, s2 ≤ s3 ≤ maxi{si}.
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Therefore, adding a third seller that fulfills these two inequalities leaves the
reference set S of technologies unchanged.

We distinguish among two possible cases: s3 = s2, which always occurs if
s1 ≤ s2, and s2 < s3 ≤ s1. In the first case, neither seller 2 or seller 3 make
profits in equilibrium because any strategy granting a positive payoff to one
of them can be replicated by the other. In particular, note that none of them
offers less than his flow surplus for states (x, t) with x̂ − x > T − t, which
eliminates any incentive to offer more than just the flow surplus at earlier
states. As a consequence, all technologies in S are adopted if s2 = s3.

In the second case seller 3 is more efficient than seller 2. This means that
the second seller never sells in equilibrium, since seller 3 can bid higher for
every buyer. In fact, seller 1 can be seen, without any loss of generality, as
competing solely against seller 3 in this case.

There are two opposite effects in action when s2 < s3. The first effect
is that seller 1 now faces a more efficient rival that might, in principle, bid
more aggressively for the buyers. This is the predatory effect of competition
which clearly hinders adoption. The second effect, which eases adoption, is
that the amount seller 3 needs to offer to any buyer is now bounded below
by s2 (and s2 ≥ s(x) for x < x̂). This is the protective effect of competition
that appears because, in equilibrium, seller 2 always offers his flow surplus.
It turns out that which effect prevails depends on the magnitude of s3: if
s3 is close to s2 we approach the case s3 = s2 in which the protective effect
dominates; as s3 goes up the predatory effect gains importance.

The model with three sellers may be solved as a model with just two
sellers, sellers 1 and 3, after updating the value function of seller 3 to:

π3(x, t) = max{s3 −max{b̄1(x, t), s2}+ π3(x, t+ 1), π3(x+ 1, t+ 1)}.
This expression simply takes into account that seller 3 now pays, at least,
seller 2’s bid—and not just the maximum bid of seller 1, b̄1(x, t). Unfortu-
nately, this model is not symmetric and there is no neat characterization as
Theorem 1’s in this case. However, we may make good use of the machinery
developed above and consider an auxiliary model with a fictitious technology
ṡ(x) ≡ max{s(x), s2} for seller 1. A seller equipped with this technology
never bids less than max{b̄1(x, t), s2}, and so his payoff π̇1 is an upper bound
for seller 1’s payoff. Proposition 7 formalizes our previous discussion.

Proposition 7 (The value of extra sellers). Fix a pair of flow surpluses
fulfilling s2 < s1, a technology s in S, and add a third seller with flow surplus
s3 in [s2, s1]. Then:

16



i. If π1(0, 0) < d(0, 0), there is a threshold s†3 in (s2, s1] such that seller
1’s payoff goes up for all s3 < s†3.

ii. If s1− s2 > s2− s(0), there is a threshold s∗3 in (s2, s1) such that seller
1’s payoff goes down for all s3 > s∗3.

Part ii of the proposition says that the predatory effect prevails if s3 is
large with respect to s2 but also s2 is close to s(0). We should recall that
adoption is easier the lower is the disruption cost |π(0)| = s2 − s(0) in the
first place.

6.B. Large numbers of buyers

In this subsection we study markets with a large number of buyers. Our
approach is to construct a continuous-time version of the model in which sales
take place at the beginning of each of T + 1 periods of length ∆ ≡ (T + 1)−1.
We then let the number of buyers grow without bound and characterize the
limit of the corresponding sequence of equilibria.

Define the following surplus function on the unit interval:

πT (x) ≡
T∑
k=0

π(k)1[∆k,∆(k+1))(x), (5)

for x in [0, 1), and πT (1) ≡ π(T ). The interpretation is that πT (∆k) (k =
0, . . . , T.) is the incremental flow surplus in state (k, t) ∈ X × {0, . . . ,∆T}
in a version of the model in which time runs in discrete steps of size ∆.
From here it is straightforward to build a continuous-time version of the
model with state-space {(x, t) ∈ [0, 1]2 : x ≤ t} in which a sale of size ∆ is
made at each date tk = ∆k (k = 0, . . . , T.) to a buyer of life span [tk, tk+1).
(Nothing happens when tk < t < tk+1.) We shall consider sequences of such
continuous-time economies—with an increasing number of buyers.

Definition 2 (dT , rT , and zT ). Define functions dT , rT , and zT on {(x, t) ∈
[0, 1]2 : x ≤ t} as:

dT (x, t) ≡
∫ 1−t

0

πT (x+ y) dy,

rT (x, t) ≡ (1− t)πT (x),

zT (x, t) ≡
∫ 1−t

0

[1− (t+ y)]πT (x+ y) dy.
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Functions dT and rT are continuous-time analogs of functions d and r
in Definition 1, while zT is a scaled-down analog of function z. Let {πT},
T = 1, 2, . . . , be a sequence of surplus functions that converges pointwise to
some function π∞ on the unit interval. Define functions d∞, r∞, and z∞

as the (pointwise) limits of functions dT , rT , and zT as T goes to +∞.12

The next proposition characterizes the limit of the sequence of equilibria
that corresponds to the sequence {πT}, T = 1, 2 . . . , of surplus functions.
Furthermore, it shows that, in the limit, there is no adoption without seller
1 fully appropriating the incremental surplus of the technology.

Proposition 8 (Large numbers payoffs). Consider the continuous-time model
outlined above and let {πT}, T = 1, 2, . . . , be a sequence of surplus functions
converging pointwise to π∞. Then, as T goes to +∞, the payoffs of the sellers
converge to:

π∞1 (x, t) =

{
d∞(x, t) if z∞(x, t) > 0

0 otherwise
,

π∞2 (x, t) =

{
r∞(x, t) if z∞(x, t) < 0

0 otherwise
.

Suppose that seller 1 sells at state (x, t) in the equilibrium of the dynamic
competition sub-game. We learned in Theorem 1 that seller 1 gets less than
the incremental surplus of the technology if missing the current sale prevents
him to make any subsequent sale, that is, π1(x, t) < d(x, t) if π2(x, t+1) > 0.
In other words, seller 1 gets less than the incremental surplus if the current
sale is crucial for him. As the number of buyers grows large in our continuous-
time model, the relative importance of each sale decreases. In the limit, the
importance of each sale is in fact negligible and seller 1 always appropriates
the incremental surplus if he adopts the technology. A parallel argument can
be made if seller 2 is the one selling at (x, t) in the sub-game’s equilibrium.

Both adoption breakdowns and the impatience property are neatly illus-
trated in our large-numbers model. Let us write down function z∞ at the
initial state as:

z∞(0, 0) = d∞(0, 0)−
∫ 1

0

x π∞(x) dx. (6)

12Because |π| ≤ s, the limits exist by the Bounded Convergence Theorem (Royden,
1988).
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Since the sign of z∞(0, 0) decides whether a technology is adopted in equi-
librium, we see in (6) that a positive incremental surplus, d∞(0, 0) > 0, is
insufficient for adoption to take place. Likewise, suppose we are given two
surplus equivalent technologies such that one is learned earlier than the other.
Since the future is weighted heavier inside the integral and π∞ is increasing,
the technology which is learned earlier must have a higher z∞(0, 0).

In the limit, our continuous-time model approximates arbitrarily well an
economy with a continuum of buyers distributed uniformly on the unit inter-
val. In such economy, a technology is characterized by a non-decreasing func-
tion σ : [0, 1]→ [s, s] that fulfills σ(0) ≤ s2 and

∫ q
0
σ(x) dx ≥ qmaxi{si}+ ε

for some q in (0, 1]. Function σ is the counterpart of function s, and gives
the instantaneous flow surplus of the technology. The interpretation is that
a new buyer shows up at each instant in the unit interval, though a share q of
the market is needed for efficiency. The model generalizes in the obvious way
to any interval T = [0, T ] (with T in R++). A parametric example should
help to fix the idea.

Example 3. Consider Example 1 with T = [0, 1] and ε = 0. Suppose
that the technology lets seller 1 produce at a cost c(x) = αx−β, with α in
(0, 0.5] and β in [0, 1).13 (The power rule is the most common specification
in empirical research; see Thompson 2010.) Let us be more specific and

consider only technologies with total cost
∫ 1

0
c(x) dx = 0.375, which is the

unitary cost of the technology in Example 1. This implies the parametric
relation α = 0.375(1− β). A straightforward computation gives:

z∞(0, 0) =

∫ 1

0

(1− x)[c2 − c(x)] dx =
0.125− 0.25β

2− β
.

Therefore, technologies with β < 0.5 are adopted, whereas technologies with
β > 0.5 are not. If β < 0.5 the first seller makes a profit of 0.125. Equilibrium
prices are always constant and equal to 0.5. Note, also, that the equilibrium
is the same as if seller 1 had c(x) = 0.375 if β < 0.5, and c(x) = c1 if β ≥ 0.5.

Proposition 8 says we may observe one of two possible outcomes in equi-
librium: either seller 1 adopts the technology and fully appropriates its incre-
mental surplus, or there is no adoption in the first place. In the former case
our model behaves as if disruption costs played no role whatsoever, whereas

13Function c requires s = −∞. This poses no technical problem because β < 1 ensures
the convergence of the integral.
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in the latter it does so as if the option of adopting the technology did never
exist. Because of the intrinsic difficulty—if not plain impossibility—of gath-
ering empirical evidence on non-adopted technologies, this result highlights
the usefulness of theoretical work in this area as well as the easiness with
which a market failure may pass by unnoticed.

7. Conclusion

We have presented a dynamic model of technology adoption based on the
idea that adoption creates socially spurious rents to non-adopters. Within
this framework, we have shown that adoption breakdowns may come as a
consequence of disruption costs, learning by doing, and time constraints. We
have been able to characterize the technologies most prone to experience
adoption failures, i.e. technologies with slow learning curves. As a corollary,
we have shown that firms may prefer adopting inferior technologies if these
can be learned faster.

We have extended our model to assess the impact of increased competition
obtaining mixed results. Nonetheless, we defend that a market in which
sellers are closer substitutes of each other is more competitive and, under
this view, our results show that competition has a positive value (Makowski
and Ostroy, 2001). We have also studied how our results vary as the number
of buyers grows large, finding that our theoretical approach sheds light on a
problem that may otherwise be elusive. In this vein, our results should warn
regulators of keeping an eye on industries with either little competition or
where technological improvements take longer to settle. In our view, these
are the industries in which adoption failures seem most likely to happen.

Our results generalize straightforwardly in a number of directions. Most
obviously, we can take the discount factor of sellers to be any number δ
within the interval (0, 1). We may consider exogenous technological change
by simply letting function s depend on time as well as on accumulated sales.
Likewise, old technologies could be subject to exogenous progress. Finally,
the case in which both sellers may adopt the technology can be treated easily.

Other generalizations need significant departures from our setup. Among
these, introducing randomness is perhaps the most natural. The adoption of
a new technology is often subject to big uncertainties whose impact should
be explored (Rosenberg, 1996). In particular, comparative statics exercises
studying the effect of increased technological risk on appropriability seem key
to us. Besides, the introduction of a random learning process should solve
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certain deficiencies of our model as, for example, its inability to reproduce
the failure of adopted technologies (Corollary 1). Also, adding exogenous but
random technological change should help us understand delays in adoption
that cannot be accounted for within the current framework (Lemma 2).
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A. Proofs

Proof of Lemma 1

The best response of a generic buyer is to buy from the seller who offers
the highest non-negative surplus and not to buy otherwise. For notational
ease, let us assume that seller 1 is the trading seller at state (x, t). Also, let
us assume, momentarily, that trade happens at state (x, t). If the equality
were not satisfied, seller 1 could decrease b1(x, t) by an infinitesimal amount
and the buyer would still buy from him. Now we show that trade happens
at state (x, t). Suppose not. Then, the highest flow surplus offered by the
sellers must be negative. But as s(·) and s2 are bounded away from zero,
seller i can offer a surplus 0 < bi(x, t) < si that is accepted by the buyer and
gives him a strictly positive flow payoff.
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Auxiliary results

The following intermediate lemmas are useful to prove Theorem 1. Recall
that:

x̂ ≡ min{x ∈ X : s(x) ≥ s2}.

Also, note that:

z(x, t) =
T−t∑
k=0

d(x, t+ k), (7)

= −
T−t∑
k=0

r(x+ k, t+ k). (8)

Lemma A. If z(x, t) ≥ 0, then: (a1) d(x, t) ≥ 0, (b1) z(x, t + 1) ≤ z(x, t),
and: (c1) z(x + 1, t + 1) ≥ 0. If z(x, t) ≤ 0, then: (a2) r(x, t) ≥ 0, (b2)
z(x+ 1, t+ 1) ≥ z(x, t), and: (c2) z(x, t+ 1) ≤ 0.

Proof. (a1): If z(x, t) ≥ 0, then d(x, t) is the largest summand in (7) because
d(x, t+k) decreases with k. (b1): Since, from (7), z(x, t+1) = z(x, t)−d(x, t),
(a1) implies (b1). (c1): From (8), z(x + 1, t + 1) = z(x, t) + r(x, t). If
x ≤ x̂, then, as π(x) ≤ 0, r(x, t) ≥ 0 which gives the result. If x > x̂, then
z(x + 1, t + 1) > 0 since it is equal to a negative sum of negative values of
r. (a2): If z(x, t) ≤ 0, then r(x, t) is the largest summand in (8) because
r(x, t) is decreasing in t and non-increasing in x. (b2) As in (c1), from (8),
z(x + 1, t + 1) = z(x, t) + r(x, t) and thus (a2) implies (b2). (c2) It follows
from (7), as d(x, t+ k) decreases with k.

Lemma B. Functions d, r, and z fulfill:

d. If z(x + 1, t + 1) ≤ 0, then 0 ≤ r(x, t + 1) ≤ −z(x, t + 1) and 0 ≤
r(x, t) ≤ −z(x, t).

e. If z(x, t + 1) ≥ 0, then 0 ≤ d(x + 1, t + 1) ≤ z(x + 1, t + 1) and
0 ≤ d(x, t) ≤ z(x, t).

f. If z(x, t+ 1) ≤ 0 and z(x+ 1, t+ 1) ≥ 0, then either:

f1. z(x+ 1, t+ 2) ≥ 0 and −z(x, t+ 1) ≤ r(x, t+ 1), or:

f2. z(x+ 1, t+ 2) ≤ 0 and z(x+ 1, t+ 1) ≤ d(x+ 1, t+ 1).
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Proof. The proof repeatedly uses the results from Lemma A.
(d): If z(x+ 1, t+ 1) ≤ 0 then, z(x+ 1, t+ 2) ≤ 0 by (c2). Hence, by (c1),

z(x, t + 1) ≤ 0. This, in turn, implies that r(x, t + 1) ≥ 0 by (a2). Since,
from (8), z(x, t+ 1) = z(x+ 1, t+ 2)− r(x, t+ 1), we have the first part of d.
For the second part, note that, by (c1), z(x, t) ≤ 0, which, by (a2), implies
that r(x, t) ≥ 0. Since by (8), z(x, t) = z(x+ 1, t+ 1)− r(x, t), we have the
second part of d.

(e): If z(x, t+ 1) ≥ 0 then, d(x, t+ 1) ≥ 0 by (a1) and z(x+ 1, t+ 2) ≥ 0
by (c1). Also, as s(·) is non-decreasing in x, d(x+ 1, t+ 1) ≥ 0. Since, from
(7), z(x + 1, t + 2) = z(x + 1, t + 1) − d(x + 1, t + 1), we already have the
first part of e. For the second part, note that, by (c2), z(x, t) ≥ 0, which, by
(a1), implies that d(x, t) ≥ 0. Since, by (7), z(x, t+ 1) = z(x, t)− d(x, t), we
have the second part of e.

(f1): z(x, t+ 1) ≤ 0 implies, by (a2), that r(x, t+ 1) ≥ 0. Since, by (8),
z(x, t+ 1) = z(x+ 1, t+ 2)− r(x, t+ 1), we have f1.

(f2): z(x+ 1, t+ 1) ≥ 0 implies, by (a1), that d(x+, t+ 1) ≥ 0. Since, by
(7), z(x+ 1, t+ 1) = d(x+ 1, t+ 1) + z(x+ 1, t+ 2), we have the result.

We use throughout the following concepts. The value functions of the
sellers are:

π1(x, t) = max{s(x)− b̄2(x, t) + π1(x+ 1, t+ 1), π1(x, t+ 1)},
π2(x, t) = max{s2 − b̄1(x, t) + π2(x, t+ 1), π2(x+ 1, t+ 1)}.

With b̄i(x, t), i = 1, 2., we denote the maximum bidding function, i.e. the
surplus Seller i is willing to transfer to the buyer at state (x, t):

b̄1(x, t) = s(x) + π1(x+ 1, t+ 1)− π1(x, t+ 1), (9)

b̄2(x, t) = s2 + π2(x, t+ 1)− π2(x+ 1, t+ 1). (10)

(Seller 1 sells at (x, t) if b̄1(x, t) = b̄2(x, t).)

Proof of Theorem 1

The proof is by backwards induction. Let t = T . The result is then obvious
for the T + 1 triangular sub-arrays Ax,t for x ∈ X, i.e. terminal states of
the form (·, t) for which d(·, t) = −r(·, t) = z(·, t) = s(·) − s2. Using the
maximum bidding functions, payoffs, at any non-terminal state (x, t), in a

24



MPE are:

π1(x, t) = max {s(x)− s2 + π1(x+ 1, t+ 1) + π2(x+ 1, t+ 1)− π2(x, t+ 1),

π1(x, t+ 1)}, (11)

π2(x, t) = max {s2 − s(x) + π2(x, t+ 1) + π1(x, t+ 1)− π1(x+ 1, t+ 1),

π2(x+ 1, t+ 1)}. (12)

Let us now consider a generic time period t. We prove that the result is true
for the t + 1 triangular sub-arrays Ax,t for x ∈ {0, ..., t} if it is true for the
t+ 2 triangular sub-arrays Ax,t+1, the induction hypothesis.

(a): If z(x+1, t+1) ≤ 0, we know from (d) in Lemma B, equations (1) and
(2) that π1(x+1, t+1) = π1(x, t+1) = 0 and that π2(x, t+1) = r(x, t+1). On
the other hand, we have, by (a2) in Lemma A, that r(x+ 1, t+ 1) ≥ 0. This,
in turn, implies, by definition of function r(·, ·), that π(x+1) ≤ 0. As π(x) is
non-decreasing in x, we have that π2(x+1, t+1) ≤ r(x+1, t+1) ≤ r(x, t+1).
Plugging these into (11) and (12) gives π1(x, t) = 0 and π2(x, t) = r(x, t).

(b): If z(x, t+1) ≥ 0, we know from (e) in Lemma B, equations (1) and (2)
that π2(x, t+1) = π2(x+1, t+1) = 0 and that π1(x+1, t+1) = d(x+1, t+1).
On the other hand, we have, by (a1) in Lemma A, that d(x, t + 1) ≥ 0. As
d(x, ·) is non-increasing in t, we have that π1(x, t+ 1) ≤ d(x, t+ 1) ≤ d(x, t).
Plugging these into (11) and (12) gives π1(x, t) = d(x, t) and π2(x, t) = 0.

(c): If z(x, t+1) ≤ 0 and z(x+1, t+1) ≥ 0, equations (1) and (2) say that
π2(x+1, t+1) = π1(x, t+1) = 0. Then either π1(x+1, t+1) = d(x+1, t+1),
or π1(x + 1, t + 1) = z(x + 1, t + 1). Let us first regard the case in which
π1(x + 1, t + 1) = d(x + 1, t + 1). It follows then from equation (1) that
z(x + 1, t + 1) ≥ d(x + 1, t + 1) ≥ 0 and thus that z(x + 1, t + 2) ≥ 0, since
z(x+ 1, t+ 2) = z(x+ 1, t+ 1)− d(x+ 1, t+ 1). Hence, from (f1) in Lemma
B, we know that π2(x, t+ 1) = z(x, t+ 1). Plugging these into (11) and (12)
gives π1(x, t) = max{d(x, t) + z(x, t+ 1), 0} = max{z(x, t), 0} and π2(x, t) =
max{−z(x, t), 0} = max{r(x, t) − z(x + 1, t + 1), 0}. A parallel argument
shows that the same result holds when π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

The previous paragraph is not valid for t = T−1, because state (x+1, t+2)
is not feasible. [It is easy to see that this problem appears if, and only if,
we are at state (x̂ − 1, T − 1).] We have that π1(x̂ − 1, T ) = π2(x̂, T ) = 0,
π1(x̂, T ) = s(x̂) − s2, and π2(x̂ − 1, T ) = s2 − s(x̂ − 1). Plugging these into
(11) and (12) completes the proof.
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Proof of Corollary 1

From Theorem 1, the result is obvious for the case in which t = T − 1 and
for the T + 1 triangular sub-arrays Ax,t for x ∈ X, i.e. terminal states of the
form (·, t). Consider now a generic non-terminal state (x, t).

(a): If z(x+ 1, t+ 1) ≤ 0, it follows from (a) in Theorem 1, (9) and (10)
that b̄1(x, t) = s(x) and b̄2(x, t) = s2 + [r(x, t+ 1)− π2(x+ 1, t+ 1)]. Then,
b̄1(x, t) < b̄2(x, t) since s2 ≥ s(x) and, from (a) in Theorem 1, π2(x+1, t+1) ≤
r(x+1, t+1) ≤ r(x, t+1).14 Thus, seller 2 will be the trading seller at date t.
Since the state moves to (x, t+1) and by (c2) in Lemma A, z(x+1, t+2) ≤ 0,
we have the result.

(b): If z(x, t + 1) ≥ 0, it follows from (b) in Theorem 1, (9) and (10)
that b̄2(x, t) = s2 and b̄1(x, t) = s(x) + [d(x+ 1, t+ 1)− π1(x, t+ 1)]. Then,
b̄1(x, t) ≥ b̄2(x, t) since b̄1(x, t)− b̄2(x, t) = d(x, t)− π1(x, t+ 1) and, from (b)
in Theorem 1, π1(x, t + 1) ≤ d(x, t + 1) ≤ d(x, t). Thus, seller 1 will be the
trading seller at date t. Since the state moves to (x+ 1, t+ 1) and by (c1) in
Lemma A, z(x+ 1, t+ 2) ≥ 0, we have the result.

(c): If z(x, t + 1) ≤ 0 and z(x + 1, t + 1) ≥ 0, we know from (c) in
Theorem 1 that π2(x+1, t+1) = π1(x, t+1) = 0. Then either π1(x+1, t+1) =
d(x+1, t+1), or π1(x+1, t+1) = z(x+1, t+1). Let us first regard the case in
which π1(x+1, t+1) = d(x+1, t+1). It follows then from (c) in Theorem 1,
(9) and (10) that b̄1(x, t) = s(x)+d(x+1, t+1) and b̄2(x, t) = s2 +z2(x, t+1).
Thus b̄1(x, t)−b̄2(x, t) = d(x, t)−z(x, t+1) = z(x, t). When z(x, t) is positive,
seller 1 will be the trading seller at date t. Since the state moves to (x+1, t+1)
and by (c1) in Lemma A, z(x+ 1, t+ 1) ≥ 0, we have the result. Clearly, the
same result holds when z(x, t) is negative and seller 2 is the trading seller at
date t. Finally, a parallel argument shows that the same result is true when
π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

Remark 2. We will use throughout the following notation. Recall that:

d(x, t) = w(x, t) +K(t), (13)

where:

w(x, t) ≡
T−t∑
k=0

[s(x+ k)−max
i
{si}], (14)

and K(t) ≡ (T − t+ 1) [maxi{si} − s2].

14That s2 ≥ s(x) follows from π(x) ≤ 0.
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Proof of Lemma 2

If the set of adopted technologies S∗ = ∅, the result holds trivially. We
assume hereafter that S∗ is non-empty. If a technology is adopted at date t,
then:

π1(0, t) ≥ K(t) + ε.

Let Π(0, t) ≡ π1(0, t) − K(t). As S∗ is non-empty, there is a date t∗ ∈ T
such that: (i) Π(0, t∗) ≥ ε; and that: (ii) Π(0, t∗) ≥ Π(0, t) ∀t ∈ T. Also,
note that it must be that π1(0, 0) ≥ 0 since π1(0, 0) ≥ π1(0, t) ∀t ∈ T, by
Theorem 1.

(a): If π1(0, 0) = z(0, 0), then π1(0, t) = 0 ∀t ≥ 1, by (c) in Theorem 1.
Therefore, Π(0, t) = 0 ∀t ≥ 1, and t∗ = 0.

(b): If π1(0, 0) = d(0, 0) and if, ∀t ≥ 1, Π(0, t) is smaller than ε, the result
holds trivially. Thus, let Π(0, t) ≥ ε for at least one t ≥ 1. Then, by (13)
and Theorem 1, we have that Π(0, t) ≤ w(0, t). And as, Π(0, 0) = w(0, 0) >
w(0, t) for ∀t ≥ 1, it follows that t∗ = 0.

Proof of Proposition 1

If switchover disruption costs are zero, i.e. π(0) ≥ 0, d(x, t) ≥ 0 for every
state (x, t) and every s ∈ S. Thus, z(x, t) ≥ d(x, t) for every state (x, t) and
every s ∈ S. This, in turn, implies, from Theorem 1, that π1(x, t) = d(x, t)
for every s ∈ S. As, from (13), d(0, 0) = w(0, 0)+K, it follows that Π(0, 0) =
w(0, 0) ≥ ε for every s ∈ S by Assumption A3.

Proof of Proposition 2

Let s be an element of S∗, then π1(0, 0) ≥ K + ε. This, in turn, implies
that z(0, 0) ≥ K + ε since, from Theorem 1, π1(0, 0) = min {d(0, 0), z(0, 0)}.
Therefore, s ∈ Nc and S∗ ⊂ Nc. Conversely, let s be an element of Nc, then
z(0, 0) ≥ K+ε. If π1(0, 0) = z(0, 0), then clearly s ∈ S∗. If π1(0, 0) = d(0, 0),
then s ∈ S∗ since d(0, 0) = w(0, 0) + K and w(0, 0) ≥ ε by Assumption A3.
Hence, s ∈ S∗ and Nc ⊂ S∗. This completes the proof.

Proof of Proposition 3

We break the proof in two parts and several steps:
Part One (Seller 2 profits): Recall that −z(x, t) = r(x, t)− z(x+ 1, t+ 1).
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Step 1 : If x = x̂− 1, then π1(x + 1, t + 1 + k) = d(x + 1, t + 1 + k) ≥ 0 for
0 ≤ k ≤ T − (t+ 1). Since:

z(x+ 1, t+ 1) =

T−(t+1)∑
k=0

d(x+ 1, t+ 1 + k),

the proof for x = x̂− 1 is complete.

Step 2 : If z(x + 1, t + 1) < 0, we know from (d) in Lemma B and (2) that
π2(x, t) = r(x, t). By (c2) in Lemma A and (1) we know that π1(x + 1, t +
1 + k) = 0 for 0 ≤ k ≤ T − (t+ 1).

Step 3 : This an auxiliary result. Suppose that z(x, t) ≥ 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x, t+ k) ≥ 0}.

Then z(x, t + k) ≥ d(x, t + k) ≥ 0 if k < k̂ and 0 ≤ z(x, t + k) ≤ d(x, t + k)
if k = k̂. Both inequalities come from the definition of k̂, the fact that
z(x, t+ k) = d(x, t+ k) + z(x, t+ k + 1) and (a1) in Lemma A.

Combining these facts with Theorem 1, we get that π1(x, t + k) is equal
to d(x, t+ k) if k < k̂, equal to z(x, t+ k̂) if k = k̂, and zero otherwise.

Step 4 : If z(x+ 1, t+ 1) ≥ 0 and x < x̂− 1, we write

z(x+ 1, t+ 1) =
k̂−1∑
l=0

d(x+ 1, t+ 1 + l) + z(x+ 1, t+ 1 + k̂),

where k̂ is the integer defined in the previous step. Combining −z(x, t) =
r(x, t)− z(x+ 1, t+ 1), Step 3 and (2), we have the result.

Part Two (Seller 1 profits): Recall that z(x, t) = d(x, t) + z(x, t+ 1).

Step 1 : If z(x, t + 1) ≥ 0, we know from (e) in Lemma B and (1) that
π1(x, t) = d(x, t). By (c1) in Lemma A and (2) we know that π2(x + k, t +
1 + k) = 0 for 0 ≤ k ≤ T − (t+ 1).

Step 2 : This an auxiliary result. Suppose that z(x, t) < 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x+ k, t+ k) < 0}.
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Then 0 ≤ r(x+k, t+k) ≤ −z(x+k, t+k) if k < k̂ and 0 ≤ −z(x+k, t+k) ≤
r(x+ k, t+ k) if k = k̂. Both inequalities come from the definition of k̂, the
fact that −z(x+ k, t+ k) = r(x+ k, t+ k)− z(x+ k + 1, t+ k + 1) and (a2)
in Lemma A.

Combining these facts with Theorem 1, we get that π2(x + k, t + k) is
equal to r(x+ k, t+ k) if k < k̂, equal to −z(x+ k, t+ k̂) if k = k̂, and zero
otherwise.

Step 3 : If z(x, t+ 1) < 0, we write:

−z(x, t+ 1) =
k̂−1∑
l=0

r(x+ l, t+ 1 + l)− z(x+ k̂, t+ 1 + k̂),

where k̂ is the integer defined in the previous step. Combining z(x, t) =
d(x, t) + z(x, t+ 1), Step 2 and (1), we have the result.

Proof of Proposition 4

For any s ∈ S:

z(0, 1) ≡
T−1∑
k=0

(T − k)π(k).

≥
T−1∑
k=0

(T − k)π(0) ≡ −Ms.

If s is an element of G, then z(0, 0) = d(0, 0)+z(0, 1) ≥ d(0, 0)−Ms ≥ K+ε.
If π1(0, 0) = z(0, 0), then s ∈ S∗. If π1(0, 0) = d(0, 0), then s ∈ S∗ since
d(0, 0) = w(0, 0) + K and w(0, 0) ≥ ε by Assumption A3. This completes
the proof.

Proof of Proposition 5

Consider any s and s′ in S. If z′−(0, 1) = z−(0, 1) = 0, we are done. Thus,
assume that z′−(0, 1) and z−(0, 1) are strictly positive and let ∆ ≡ z′−(0, 1)−
z−(0, 1). Then, as s � s′, there is a 1 ≤ k ≤ (T − 1) such that:

∆ =
k∑
x=1

(T − x)ξ(x) +
T−1∑
x=k+1

(T − x)ξ(x). (15)

ξ(1) + · · ·+ ξ(k) + ξ(k + 1) + · · ·+ ξ(T ) = 0, (16)
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where empty sums are taken to be zero, ξ(x) ≡ (π(x)− π′(x)), ξ(x) ≥ 0 for
x ≤ k, and ξ(x) ≤ 0 for x ≥ k + 1. Using (16) into (15), we have:

∆ ≥ −(T − k)
T∑

x=k+1

ξ(x) +
T−1∑
x=k+1

(T − x)ξ(x),

= −
T−k∑
l=1

lξ(k + l) > 0,

and the proof is complete.

Proof of Proposition 6

It suffices to show that there are technologies in Nc with social value arbi-
trarily close to zero. Simply consider a technology sε (ε > 0) with πε(0) = 0,
πε(1) = · · · = πε(T ) = K+ε

T
, and sunk cost ε = 0. It has a social value equal

to ε and:

zε(0, 0) =
K + ε

2
(T + 1) > ε+K.

Proof of Proposition 7

If a fictitious seller 1 has access to technology ṡ, with ṡ(x) = max{s(x), s2}
for x ∈ X, he always bids more than s2. If, in addition, s2 ≤ s3, we may
conclude that Seller 2 is irrelevant in this three-sellers model. We may then
compute the profits of Seller 1, π̇1, as we do in the two sellers’ model. Also,
since ṡ(x) ≥ s(x) for all x ∈ X, we have that the profits π̇1 of the fictitious
Seller 1 are an upper bound for Seller 1’s profits—both with three sellers.
Therefore, it suffices to show that there is s∗3 ∈ (s2, s1) such that π̇1 ≤ π1 for
all s3 > s∗3.

From Theorem 1 is obvious that π̇ decreases continuously with s3. Let
s3 = s1. Since in this case s3 − s2 > s2 − s(0) by assumption, we have that
π̇(x) = max{s(x), s2} − s3 < s(x) − s2 = π(x) for all x ∈ X. Then, by
continuity and monotonicity with respect to s3, there is s∗3 ∈ (s2, s1) such
that π̇1 ≤ π1 for all s3 > s∗3, and the proof is complete.

Proof of Proposition 8

Let πT be a surplus function as defined in (5). Consider a discrete-time
model with π(y) = ∆πT (∆y), y = 0, . . . , T . Quantities d, r, and z at state
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(y, u) ∈ X× T are:

d(y, u) =
T−u∑
k=0

∆πT (∆(y + k)),

r(y, u) = (1−∆u)πT (∆y),

z(y, u) =
T−u∑
k=0

[1−∆(u+ k)]πT (∆(y + k)).

Clearly, we have that d(y, u) = dT (∆y,∆u), r(y, u) = rT (∆y,∆u), and
z(y, u) = ∆−1zT (∆y,∆u). The equilibrium payoffs of the sellers in the
discrete-time model are given in Theorem 1:

π1(y, u) = min {max{dT (∆y,∆u), 0},max{∆−1zT (∆y,∆u), 0}},
π2(y, u) = min {min{rT (∆y,∆u), 0},−min{∆−1zT (∆y,∆u), 0}}.

Therefore, the payoffs in the continuous-time model are simply:

πTi (x, t) :=
T∑
y=0

T∑
u=0

πi(y, u)1[∆y,∆(y+1))(x)1[∆u,∆(u+1))(t),

for i = 1, 2. Since ∆−1zT (∆y,∆u) diverges to ±∞ as T goes to +∞, whereas
dT and rT converge to d∞ and r∞, the proof is complete.
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