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Abstract

This note deals with a harvesting model for a single stock fishery. In the case of small pelagic
fish it seems reasonable to consider harvest functions depending nonlinearly on fishing effort and
on fish stock. Empirical evidence about these fish species suggests that marginal catch does not
necessarily react in a linear way to changes in fishing effort and fish stock levels. This is in
contradiction with traditional fishery models where catch-to-input marginal productivities are
normally assumed to be constant. While allowing for non linearities in both catch-to-effort
and catch-to-stock parameters, this note extends the traditional analysis by focusing on the
dependence of the stationary solutions upon the nonlinear catch-to-biomass parameter. Given
the emphasis on the case of small pelagic fish, the analysis considers positive but small values
for the catch-to-stock parameter.

Keywords: small pelagic fisheries, harvesting functions, Cobb-Douglas production function,
optimal control, maximum principle.

1 Introduction

Small pelagic fish stocks, such as anchovy, sardine, herring and jack mackerel represent an important
proportion of world’s marine fish harvests (about a third of it, with more than 20 million tons
per year worldwide, according to FAO statistics). In some fishing nations (e.g., Peru and Chile),
fisheries of this type are important resources for their national economies, both in terms of value
added production as well as for regional employment.

Small pelagic stocks are characterized by some peculiar features. On the one hand, they tend to
face strong and recurrent cycles of fish abundance. On the other, they usually provide for high catch
yields per fishing effort unit. Given these characteristics, different pelagic stocks have experienced
fishing collapse. Examples in the XXth century are the sardine fishery in Japan during the early
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1940s, the sardine fishery in California a decade later, the herring population in the North Sea at the
end of the 1960s and early 1970s, and the early 1970s collapse of the Peruvian anchovy (Peña-Torres
[20]).

However, the abovementioned characteristics are normally absent from traditional mathematical
fishery models. This literature has typically focused on the case of linear harvest functions (well
known examples are Clark [9, 10]; Plourde and Yeung [23]; Dockner et al. [13]). This approach has
obvious advantages in terms of mathematical tractability. Thus, the model that usually describes
a single species fish stock’s evolution in continuous time is

ẋ(t) = F (x(t))− u(t)x(t),

where x(t) is the fish stock level at time t, u(t) is fishing effort1 and F is the species biological
growth function.

In contrast, and given this paper’s focus on the case of small pelagic fish resources, we consider
a Cobb-Douglas form for the harvest function2 :

h(t) = uα(t)xβ(t), (1.1)

where α and β are two non negative parameters such that α+ β ≥ 1.
The value of parameter α > 0 controls for how fishing effort’s marginal catch productivity varies

as the fishing effort level changes. Thus, α = 1 implies constant marginal productivity of additional
fishing effort units. On the other hand, the parameter β ≥ 0 measures how sensitive catch yields
are to marginal changes in fish stock level. In the case of constant unit cost of fishing effort, the
lower the value of β > 0 the less sensitive the unit harvest cost will be to variations in fish stock
level. Hence, the lower the value of β the more likely should be, ceteris paribus, the occurrence of
a fishing collapse outcome.

Regarding the function (1.1), empirical studies suggest that for small pelagic fisheries neither
α nor β would necessarily be close to unitary values. Indeed, available evidence suggests positive
values but lower than the unit for the case of β (e.g., Opsomer and Conrad [18]; Bjorndal and
Conrad [5]). For this type of fish stocks, some authors have even suggested that, for certain ranges
of fish abundance, total independence may eventually prevail between catch yields and fish stock
levels (e.g., MacCall [17]; Clark [8]; Csirke [11]; Bjorndal [3, 4])3. Regarding the value of α, available
evidence for several small pelagic fisheries suggests positive values that are either very close to or
greater than the unit (e.g. Bjorndal [2, 4]; Bjorndal and Conrad [5]; Opsoner and Conrad [18]; Peña-
Torres and Basch [21]; Peña-Torres, Vergara and Basch [22]). In order to maintain mathematical
tractability, in this paper we will limit the analysis to studying cases with α ≤ 1.

1The use of a single input variable presupposes that other inputs (e.g., labour, capital) are used in fixed proportions,
so input use intensity can be measured up by a single variable.

2This is a widely used functional form in economics. See Heathfield and Wibe [15, Ch. 4] about its properties
when applied to modeling production functions. However, its use at fishery models has been very uncommon (rare
exceptions are Leonard and Van Long [16], Hannesson [14, Page 53] and Peña-Torres [20]). See also Dasgupta and
Heal [12] for a classical description of its use at optimal economic growth models for economies with exhaustible
natural resource.

3Marine biologists (e.g. Csirke [11]) have stated that in small pelagic fisheries mean harvest yields (per unit of
fishing effort) are not a good predictor of changes in fish abundance. The hypothesis is that when abundance falls,
small pelagic fish stocks tend to reduce the range of their feeding and breeding areas, with concurrent decreases in
the number of schools, despite that schools’ average size may remain constant. That is, the stock reduces the range
of its spatial distribution while simultaneously increasing its density. This behaviour could result in a relation of
independence between harvest yields and fish stock abundance.
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Given the evidence and conjectures quoted, this paper focuses on harvesting settings in which
α+ β = 1 and β is initially positive but it may eventually tend to zero. The analysis concentrates
on the nature of the resulting stationary equilibria. The emphasis will be on studying the sensitivity
of the corresponding equilibria with respect to changes in the value of parameters β, when β has
relatively small positive values. In particular, given α + β = 1, we study the effects of changes in
the proportion (α/β) when β → 0 and α→ 1.

For simplicity, we consider the optimal control problem of a social planner who maximizes the
total discounted value of the intertemporal flows of the fish stock economic rents, when the harvest
function of each agent is given by (1.1). We analyze the steady states of the associated dynamical
system describing the asymptotic behavior of these states when β in (1.1) tends to zero.

The outline of this article is the following: In Section 2 we characterize and solve the social
planner’s problem when β ∈]0, 1[ and α + β = 1. Section 3 analyzes the unique steady state
equilibrium’s behavior as a function of parameter β. Finally, Section 4 discusses the asymptotic
behavior of the unique stationary equilibrium when β → 0. This section constitutes the main core
of our work. The proofs are relegated to the appendix.

2 The social planner’s problem

Consider N symmetric fishing units (say vessels) harvesting simultaneously a single-species fish
stock. The number of fishing units is exogenous. All these vessels are under the social planner’s
control.

Given an admissible fishing effort policy u(·), the resulting catch h(·) is given by the Cobb-
Douglas function (1.1). Thus, the evolution of the fish stock level xu(·), starting from an initial
condition x0 > 0 is given by the solution of the following ordinary differential equation:{

ẋ(t) = F (x(t))−Nuα(t)xβ(t) t > 0

x(0) = x0

(2.1)

where the biological growth function F is assumed strictly concave and twice continuously differ-
entiable. We shall assume that there exists K > 0 called saturation constant such that F (0) =
F (K) = 0 and F (x) > 0 for all x ∈]0,K[.

Example 2.1. Some examples of biological growth function F are the following:

• Logistic function: F (x) = ax(1− x/K);

• Gompertz function: F (x) =
{
ax ln(K/x) if x > 0
0 if x = 0

where a > 0 is a given parameter.

In what follows we assume that x0 ∈]0,K[, and therefore the trajectory x(t) remains in this
interval for all t > 0 and for any applied fishing effort.

The social planner’s problem consists of choosing each vessel’s fishing effort u(t) ≥ 0 in order to
maximize the total discounted value of the intertemporal flow of the natural resource’s rents given
by

J(u, xu) := N

∫ +∞

0
e−rt(puα(t)xβu(t)− cu(t))dt (2.2)
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where r > 0 is the (time invariant) discount rate, c is the (constant) cost per unit of fishing effort,
and p is the (constant) unit price of harvesting.

Remark 2.2. Notice that, since the quantity Nuα(t)xβ(t) represents the instantaneous total har-
vesting, we necessarily have, for any time t, the following two inequalities

uα(t)xβ(t) ≤ Nuα(t)xβ(t) ≤ x(t),

where the first inequality is a simple consequence of N ≥ 1. Consequently, uα(t) ≤ xα(t) and then
uβ(t) ≤ xβ(t). So, the instantaneous profit associated with the optimization criteria (2.2) satisfies

N(puα(t)xβ(t)− cu(t)) = Nuα(t)(pxβ(t)− cuβ(t)) ≥ Nuα+β(t)(p− c).

Therefore, in order to ensure the positivity of the instantaneous profits above, we will implicitly
assume from now on that p > c.

Hence, for a given initial condition x0, the infinite horizon control problem is established as
follows:

(PSP ) V (x0) := max
u∈U
{J(u, xu) : xu solves (2.1)} (2.3)

where J(u, xu) is the criteria given in (2.2) and the admissible control set U is defined by

U = {u : [0,+∞[−→ [0, Ū [ : u piecewise continuous}.

Here Ū ∈]0,+∞] is the maximal fishing effort allowed to each firm, being able to be +∞.

In what follows we focus on the problem (PSP ) when the marginal catch productivity is strictly
decreasing with respect to the stock level, that is when β ∈]0, 1[. Moreover, for the sake of simplicity,
we shall assume α + β = 1 with β > 0. The latter allows us to work with a strictly concave
Hamiltonian.

The following proposition establishes, for a fixed β ∈]0, 1[, the Pontryagin’s maximum principle
for the optimal control problem (PSP ) .

Proposition 2.3. Let u : [0,+∞[−→ [0,+∞[ be an optimal solution of the infinite horizon problem
(PSP ) and x : [0,+∞[−→]0,K[ the associated fish stock level4. Then, there exists a function λ
differentiable almost everywhere, such that

(i)
λ̇(t) = rλ(t)− βNpvuαxβ−1 − λ(t)(F ′(x̄)− βNuαxβ−1) a.e. t > 0; (2.4)

(ii) the Hamiltonian defined by

H(λ, x, u) = N(puαxβ − cu) + λ(F (x)−Nuαxβ) (2.5)

is maximized in u(t) for every t, that is

H(λ(t), x(t), u(t)) = max
u≥0

H(λ(t), x(t), u), (2.6)

where λ is the current valued shadow (unit) price of x.
4We omit the sub-index u for the trajectory x(·) associated to u.
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Proof. It is a direct application of the Pontryagin’s maximum principle. See for instance [24, 1,
25].

Given an optimal policy u and the associated trajectory x, the above result allows to obtain the
expression of u in terms of the shadow price λ. Indeed, since the Hamiltonian H is maximized in
u(t), the Fermat’s rule ∂H

∂u = 0 gives

u(x(t), λ(t)) =

 0 if λ(t) ≥ p(
α(p−λ(t))

c

) 1
β
x(t) if λ(t) < p.

(2.7)

As expected, the above expression shows that if the social planner assigns a higher value than
the harvest price p to keep (invest on) an additional unit of the fish stock at sea, then the optimal
policy consists in stopping fishing effort completely and immediately.

In what follows, let us consider an optimal policy u(·), the associated trajectory x(·), and the
shadow price λ(·) given by Proposition 2.3 under the assumption α+ β = 1 (for a fixed β).

From (2.1), (2.4), and (2.7) we obtain a new system for the state x and adjoint state λ given by
ẋ(t) = ϕ1(x(t), λ(t))

λ̇(t) = ϕ2(x(t), λ(t));

x(0) = x0

(2.8)

where

ϕ1(x, λ) :=
{
F (x) if λ ≥ p
F (x)−Nφα(λ)x if λ < p,

ϕ2(x, λ) :=
{
λ(r − F ′(x)) if λ ≥ p
λ(r − F ′(x))− βNφα(λ)(p− λ) if λ < p,

and

φ(λ) :=
(
α(p− λ)

c

) 1
β

.

Notice that the functions ϕ1 and ϕ2 are continuously differentiable. This implies the existence
and uniqueness of (x, λ) solution of system (2.8).

3 Properties of the stationary equilibrium

The proposition below ensures the existence and uniqueness of a steady state of the system (2.8).

Proposition 3.1. If r < F ′(0) < N((1 − β)p/c)
1−β
β , then the system (2.8) has only one steady

state (x∗(β), λ∗(β)) satisfying the relation:

λ∗(β) = p−
(

c

1− β

)(
F (x∗(β))
Nx∗(β)

) β
1−β

. (3.1)
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Furthermore, the unique steady state is in ]xr,K[×]λ̄β, p[, where

F ′(xr) = r and λ̄β = p− c

(1− β)

(
F (xr)
Nxr

) β
1−β

.

Proof. See Appendix A.1.

Remark 3.2. Notice that the term N((1−β)p/c)
1−β
β converges to +∞ when β → 0. Then, for small

values of β, the hypothesis F ′(0) < N((1 − β)p/c)
1−β
β (assumed in Proposition 3.1 above) always

holds true.

Remark 3.3. The stationary solution λ∗(β) that is relevant to our analysis is necessarily positive,
as the latter is the only solution of economic interest. Notice that the positivity of λ∗(β) will hold
for β > 0 small enough.

Naturally, we need to impose condition F ′(0) > r to ensure that the stationary solution x∗(β)
will be strictly positive. Otherwise, it would be optimal to fully deplete the resource x and thereby
being able to invest the obtained harvesting profits at the market return r > 0.

Proposition 3.1 also states that the optimal stationary state x∗(β) will be strictly above the
value xr. The logic for this is as follows. First of all, the stationary economic optimum implies
that no additional gains can be obtained from exploiting x at a different level. Therefore, at the
stationary equilibrium, the return obtainable from marginal changes in the level of investment on x
must fully coincide with the opportunity cost of doing such an investment. In our problem (PSP),
such opportunity cost is given by the parameter r > 0.

Now, Euler-Lagrange equations applied to our problem (PSP ) leads to:

F ′(x∗(β)) +
Ncβ

1− β

(
F (x∗(β))
Nx∗(β)

) 1
1−β

λ∗(β)
= r. (3.2)

which is a variant (for 0 < β < 1) of the well-known equation describing the stationary optimal
solution (x∗, λ∗) and which is known in the economic literature as the “fundamental equation of
renewable resource exploitation” (e.g., see Bjorndal and Munro [6], and Hannesson [14, Eq. (2.11)]):

F ′(x∗) +
C ′(u∗)∂h∂x(x∗, u∗)

p∂h∂u(x∗, u∗)− C ′(u∗)
= r, (3.3)

where C(u) = cu is the cost of u units of fishing effort.
The left hand-side of equation (3.2) describes the return obtained from investing on x at the

stationary level x∗. As (3.2) shows, the return from keeping an additional unit of x at sea comes
from two sources. On the one hand, the biological return of keeping an additional unit of x at
sea, which is given by F ′(x∗(β)). On the other, the profits resulting from the incremental harvest,
given that ∂(uαxβ)

∂x > 0, which holds for β > 0. This second source of return will thus increase the
profitability of investing on x, adding itself to the gain directly consisting of the marginal biological
return F ′(x∗). Therefore, the intertemporal equilibrium (that is, the optimal investment) condition
will be such that F ′(x∗) < F ′(xr) = r and, by the strict concavity of function F (·), then x∗ > xr.
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Lemma 3.4. The unique steady state of the system (2.8) is a saddle point. That is, the Jacobian
matrix of the function ϕ(x, λ) = (ϕ1(x, λ), ϕ2(x, λ)) evaluated in the steady state (x∗(β), λ∗(β)) has
two real eigenvalues with opposite signs.

Proof. See Appendix A.2.

The property established above is well known and arises in different economic problems. For
instance, in the case of harvesting fishery models, it can be found in [7, 16, 19] when the function
F is a logistic map and α = β = 1/2.

4 Analysis about the asymptotic behavior when β → 0

In this part, we study the behavior of the unique steady state given by Proposition 3.1 with respect
to variations of parameter β. In particular, we focus on the case of β → 0.

For the parameter β ∈ (0, 1), we shall denote by x∗(β) and λ∗(β) the corresponding (unique)
steady states. The pair (x∗(β), λ∗(β)), solves the following system

0 = Φ1(x, λ, β) := F (x)−Nφ1−β(λ)x

0 = Φ2(x, λ, β) := −λ(F ′(x)− r) + βNφ1−β(λ)(λ− p).
(4.1)

Consequently, we write u(β) the associated steady control given by

u(β) =
(
α(p− λ∗(β))

c

) 1
β

x∗(β). (4.2)

In the above equality, the assumption α+ β = 1 was considered.
Thus, the total equilibrium harvesting is

h(β) = Nu(β)αx∗(β)β = F (x∗(β)). (4.3)

Proposition 4.1. There exist two continuously differentiable functions x :]0, 1[−→ (xr,+∞) and
λ : (0, 1) −→ (0, p) such that

0 = Φ1(x(β), λ(β), β)
0 = Φ2(x(β), λ(β), β).

(4.4)

Proof. See Appendix A.3.

Remark 4.2. Note that, since the steady state of system (2.8) is unique, Proposition 4.1 above
implies that (x(β), λ(β)) = (x∗(β), λ∗(β)), for all β ∈ (0, 1). So, from now on, we can use notation
(x(β), λ(β)) for both meanings without any possibility of confusion.

The above result establishes that there is a continuous dependence of the steady states with
respect to parameter β. Furthermore, the next proposition shows that the steady states converge
when β goes to zero.

Proposition 4.3. The steady states converge as follows, when the parameter β goes to zero:
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1. lim
β→0

x(β) = xr ;

2. lim
β→0

λ(β) = p− c ,

where xr is such that F ′(xr) = r. Moreover, the limit of the optimal effort at the equilibrium is

lim
β→0

u(β) =
F (xr)
N

.

Proof. See Appendix A.4.

Remark 4.4. It is well known that the solution of the Pontryaguin system (2.8) associated with
problem (PSP ) when α = 1 and β = 0 is a turnpike solution approaching as fast as possible to the
values x = xr and λ = p − c (see for example [10]). So, Proposition 4.3 establishes that the limit
behavior of the steady states solutions (x(β), λ(β)), when β → 0, is coherent with this limit result.

When β → 0 we see from condition (3.2) that there will tend to remain a unique source of return
from keeping an additional unit of x at sea, that is the biological growth rate F ′(x∗(β)). This is
so because the current period profits tend to be independent of x and therefore the Hamiltonian
(or value) function at (4.4), which has to be maximized by choosing the optimal control u∗, varies
with changes in x only by the differential effect F ′(x). As a result of this, the optimal stationary
equilibrium x∗ tends to the value xr.

Proposition 4.5. The limits of derivatives of steady states with respect to β , when β → 0, are:

lim
β→0

dx

dβ
= − cF (xr)

F ′′(xr)(p− c)xr
> 0; (4.5)

lim
β→0

dλ

dβ
= −c

[
ln
(
F (xr)
Nxr

)
+ 1
]
. (4.6)

Therefore, for β small enough, one has that:

1. dx
dβ > 0, that is, x∗(β) decreases when β decreases.

2. (a) if ln
(
F (xr)
Nxr

)
+ 1 > 0 then dλ

dβ < 0, that is, λ(β) increases when β decreases.

(b) if ln
(
F (xr)
Nxr

)
+ 1 < 0 then dλ

dβ > 0, that is, λ(β) decreases when β decreases.

Proof. See Appendix A.5.

The result in Part 1 at Proposition 4.5 is directly related to the economic intuition already
analyzed regarding the results at Proposition 3.1: a greater value of β > 0 increases the profit
effect from one of the two sources of positive marginal returns which are obtained from keeping an
additional unit of x at sea. Thus, at the steady state equilibrium a greater value of β will imply a
higher stationary value for x.

Regarding the result in Part 2 at Proposition 4.5, its economic interpretation is as follows: Parts
(a) and (b) define different parametric value ranges which imply, at the stationary equilibrium,
opposite signs for the differential effect dλ

dβ . The result (2.a) implies that dλ
dβ < 0 if the parametric
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value5 F (xr)/(Nxr) is above a minimum bound. Thus, for a given function F (x) and a given value
of N , the result (2.a) will hold as long as the market rate of interest r is above a lower bound; and
correspondingly, for a given value of r, the number N of fishing units is below an upper bound.
Therefore, the result (2.a) will hold for “relatively high values” of r and/or “relatively low values” of
N . Whereas the differential result at (2.b) will hold for the opposite parametric value ranges; that
is, the result (2.b) will hold, , for a given value of N , as long as the value of parameter r > 0 is
“relatively small” (i.e., below an upper bound) or, for a given value of r, the value of parameter N
is “relatively large” (i.e., above a lower bound).

It is interesting to notice that the condition that “β is small enough” in Proposition 4.5 implies
the validity of one of the two conditions needed for ensuring the existence and uniqueness of a
positive steady-state solution in this model. The second condition needed is r < F ′(0). The latter
defines an upper bound on the feasible values of r such that the stationary solution x∗ > 0, i.e.
a solution of economic interest. Given these two conditions, the results in Part 2 of Proposition
4.5 then define parametric value ranges for N , given a biological function F (·), which determines
whether the result (2.a) or (2.b) holds. Indeed, and considering r ∈ (0, F ′(0)) and a function F (·)
satisfying the properties defined at Section 2, the result (2.b) will always hold as long as N/e > F ′(0)
(which imposes a lower bound on N , as already explained). Whereas the result (2.a) will always
hold as long as N/e < F (x′)/x′ (i.e., an upper bound on N), where x′ is the element such that
F (x′) = max{F (x) : 0 < x < K} and K > 0 is the saturation constant defined at Section 2. Finally,
for given values of N such that F (x′)/x′ < N/e < F ′(0), the result (2.b) will hold for “relatively
small” values of r (close to zero), whereas the result (2.a) will hold for “relatively high” values of r
(close to F ′(0)).

Moreover, notice that a higher value of r > 0 implies a greater opportunity cost of (investing
on) keeping an additional unit of x at sea, which in turn implies, ceteris paribus, a lower demand
valuation (of the optimizing social planner) for keeping an additional unit of x at sea. Thus, for
higher values of r the stationary solution for x should be at a lower level and at a higher level for
the stationary fishing effort u (keeping constant all other factors). Recall also that, in this model,
the social planner’s (marginal) valuation of incremental units of investment on x corresponds to the
value of the co-state variable λ ≥ 0. A similar effect on the social planner’s valuation of marginal
investment on x, again keeping constant all other factors, will be associated with relatively small
values of N . In contrast, the result (2.b) will hold for (N, r) values such that the social planner’s
valuation of marginal investments on x is relatively high, either because of a large N or due to a
low value of r.

Therefore, and according with the results at Proposition 4.5, dλdβ < 0 will hold for relatively low
stationary values of λ and x, and vice versa for the case when dλ

dβ > 0.
In the next propositions we explore other differential effects which underlie the resulting signs for

dλ
dβ at Proposition 4.5. Firstly, for β ∈ (0, 1) small enough, it can be proved that, at the stationary
equilibrium, dhdβ > 0, as we see in the next proposition:

Proposition 4.6. For β ∈ (0, 1) small enough, the equilibrium harvesting h(β) decreases when β
decreases.

Proof. See Appendix A.6.
5This term can be interpreted as the (per fishing unit) biological rate of return from marginal investments on x

when x = xr.
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Secondly, we also know by the result in Part 1 at Proposition 4.5 that, at the stationary
equilibrium, dxdβ > 0 for β ∈ (0, 1) small enough. Thirdly, and again for β ∈ (0, 1) small enough, it
can be proved that, at the stationary equilibrium, d

dβ

(
∂h
∂x

)
> 0, as we show in the next proposition

Proposition 4.7. For β ∈ (0, 1) small enough, the marginal equilibrium harvesting ∂h
∂x decreases

when β decreases.

Proof. See Appendix A.7.

Therefore, for β ∈ (0, 1) small enough, we know that increases in beta will increase the steady
state levels of x and h. So, how can it then be that, for β ∈ (0, 1) small enough, the sign of dλ

dβ
changes as a function of a critical value for the parametric condition F (xr)/(Nxr) > 0? The answer
must lie in the marginal effects of changes in β upon the stationary value of the fishing effort u.
The following Proposition and Corollary provide the answer.

Proposition 4.8. The marginal harvesting productivity of u, at equilibrium, has the same mono-
tonicity properties that the shadow price when β varies. Indeed,

d

dβ

(
∂h

∂u
(x(β), λ(β))

)
=
(

Nc

(p− λ(β))2

)
dλ(β)
dβ

. (4.7)

Proof. See Appendix A.8.

Corollary 4.9. For β ∈ (0, 1) small enough, one has that:

1. if ln
(
F (xr)
Nxr

)
+ 1 > 0 then d

dβ

(
∂h
∂u

)
< 0.

2. if ln
(
F (xr)
Nxr

)
+ 1 < 0 then d

dβ

(
∂h
∂u

)
> 0.

Proof. This is a direct consequence of Propositions 4.5 and 4.8.

Naturally, we are interested in the monotonicity properties described at Parts 1 ands 2 of Col-
lorary 4.9 for the cases when p − c > 0, which is a necessary condition for obtaining stationary
solutions of economic interests, i.e. where x∗, λ∗ and u∗ are all strictly positive. In this setting,
and again for β ∈ (0, 1) small enough, the parametric condition which guarantees the validity of
the result (2.a) at Proposition 4.5 also implies that the marginal productivity of fishing effort u
decreases as β increases, all other factors remaining constant; whereas the opposite effect on the
marginal productivity of u occurs for the parametric values such that the result (2.b) at Proposition
4.5 is valid. Thus, relatively low stationary values of λ, which are compatible with relatively high
values of r and/or relatively low values of N , will coincide with the result at Part 1 of Corollary
4.9; and vice versa for the result at Part 2 of this Corollary.

The next Proposition 4.10 and its corresponding Corollary 4.11 help to describe the marginal
effect on the stationary solution u∗ as the value of β changes, for the case when β ∈ (0, 1) is small
enough.

Proposition 4.10. The limit of du
dβ when β goes to zero is:

lim
β→0

du

dβ
=
F (xr)
N

(
ln
(
F (xr)
Nxr

)
− rc

F ′′(xr)(p− c)xr

)
.

10



Proof. See Appendix A.9.

Corollary 4.11. For β ∈ (0, 1) small enough, if F (xr)
Nxr

> 1, then du
dβ > 0 and dλ

dβ < 0.

Proof. The sign of dudβ is a direct consequence of Proposition 4.10. Indeed, the strict concavity of F

implies that F (xr)
N

(
ln
(
F (xr)
Nxr

)
− rc

F ′′(xr)(p−c)xr

)
> 0 whenever F (xr)

Nxr
> 1. The sign of dλ

dβ is trivially

obtained from Proposition 4.5 because F (xr)
Nxr

> 1 implies that ln
(
F (xr)
Nxr

)
+ 1 > 0 .

To obtain economic intuitions from these two last results, let us consider some specific parametric
configurations. Firstly, let us consider r ∈ (0, F ′(0)) and also impose boundaries on the value of
N such that F (x′)/x′ < N/e < F ′(0), where x′ is the element such that F (x′) = max{F (x) : 0 <
x < K} and K > 0 is the saturation constant. Thus, we know that result (2.b) at Proposition 4.5
will prevail for r close to zero. Under these conditions, the result at Proposition 4.10 necessarily
implies du

dβ < 0. Therefore, for (N, r) values such that the social planner assigns a “relatively high”
value λ∗ > 0 to keeping an additional unit of x at sea, if β > 0 (but small enough) increases then
the stationary solutions λ∗ and x∗ will also both increase, whereas the stationary fishing effort u∗

will decline. Notice that a very small value of r implies a greater present value of the stream of
future profits resulting from harvesting x, given p− c > 0, which in turn implies a greater incentive
for investing on additional sustainable (or stationary) units of x. Secondly, if we now maintain the
parametric configuration (N, r) which guarantees the validity of result (2.b) at Proposition 4.5, and
additionally suppose that the fishing business under analysis is quite profitable, let say implying
that (p − c) is very large, then the result at Proposition 4.10 will again imply du

dβ < 0. Because in
this case the fishing business is very good and also the present value of the stream of future profits
is sufficiently large, given the low value of r and the large fishing fleet (given the relatively large
but bounded value of N), in this case the planner’s optimal reaction to a greater value of β > 0
will again be to invest on additional units of stationary x∗ at sea while reducing the value of each
fishing unit’s stationary fishing effort u∗. Thirdly, consider now any given values of N and r such
that all three stationary solutions (x∗, λ∗, u∗) are strictly positive. Suppose now that p − c > 0
but small enough. In this case, the result at Proposition 4.10 necessarily implies du

dβ > 0, given the
strict concavity of function F (·). Therefore, when β increases, and so does the stationary solution
x∗ > 0, and there are profits to be made from harvesting x, but the profit per unit of fishing effort
is quite small, the social planner’s optimal fishing policy will consist of increasing the stationary
(per unit- or boat-) level of fishing effort. Fourthly, now for a given value of (p − c), and again
considering (N, r) parametric configurations such that all three stationary solutions (x∗, λ∗, u∗) are
strictly positive, if r > 0 gets close enough to the value of F ′(0), and so does the value xr gets close
to zero, the result at Proposition 4.10 necessarily implies that du

dβ > 0. In this case, the relatively
high value of r implies, ceteris paribus, that the social planner will assign a relatively low value λ∗ at
keeping additional (stationary) units of x at sea, because of the smaller present value of the future
stream of harvesting profits. Hence, the optimal fishing policy will be to increase the (per-unit)
fishing effort from all available fishing units. In a consistent way with this last intuition, Corollary
4.11 simply states that the result du

dβ > 0 will always prevail for sufficiently high values of r, given
a value of N , and/or for sufficiently low values of N , given a value of r, in all these cases the
parametric configuration being such that F (xr)/Nxr > 1.
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A Proofs

A.1 Proof of Proposition 3.1

For the sake of simplicity, we denote the steady states of (2.8) by x∗ = x∗(β) and λ∗ = λ∗(β).
In order to prove the existence of (x∗, λ∗), let us define the following function

g(x) =
c

α

(
F (x)
Nx

) β
α
(
β
F (x)
x

+ r − F ′(x)
)

+ F ′(x)p.

Note that

g(x)→ c

α

(
F ′(0)
N

) β
α (
βF ′(0) + r − F ′(0)

)
+ F ′(0)p, when x→ 0.

This last limit is strictly greater than rp. On the other hand, g(K) = F ′(K)p < 0 < rp. Therefore,
there exists x∗ ∈ [0,K] such that g(x∗) = rp. Then, defining

λ∗ = p− c

α

(
F (x∗)
Nx∗

) β
α

,

it follows that (x∗, λ∗) is a steady state of (2.8) and relation (3.1) is satisfied.
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We now proceed to prove that (x∗, λ∗) ∈]xr,+∞[×]λβ, p[. Note that, since F es strictly concave,
x = xr is the only point satisfying F ′(x) = r. Then, since F (xr) 6= 0 (otherwise F (x) < 0 for all
x < xr close enough to xr which contradicts the positivity of F on [0,K]), it necessarily holds that
λ < p. Also, cases when x∗ = 0 or λ∗ = 0 are trivially discarded. So, (x∗, λ∗) is a steady state if
and only if

F (x∗)
Nx∗

= φα(λ∗) (A.1)

F ′(x∗)− r = Φ(λ∗), (A.2)

where the auxiliar function Φ is defined as follows

Φ(λ) =
βNφα(λ)(λ− p)

λ
. (A.3)

Notice that Φ has a minimum over ] −∞, 0[ at λm = −βp/(1 − β) (Indeed, Φ′(λ) < 0 when λ ∈
]−∞, λm[ and Φ′(λ) > 0 when λ ∈]λm, 0[). So, the hypotheses on F ′(0) and the strictly concavity
of F imply that

F ′(x∗)− r ≤ F ′(0)− r < F ′(0) < N((1− β)p/c)
1−β
β < N(p/c)

1−β
β = Φ(λm),

which together with (A.2) discards the case when λ∗ < 0. Consequently, x∗ should be necessarily
strictly greater than xr, because otherwise left and right terms in equality (A.2) have opposite signs.

We finally note that λ > λ̄β follows from the relations:

φα(λ̄β) =
F (x̄)
Nx̄

>
F (x∗)
Nx∗

= φα(λ∗)

where the inequality is due to the monotonicity of function x→ F (x)/x, which is a consequence of
the strict concavity of F .

We finish this proof by showing the uniqueness of the steady state (x∗, λ∗). Consider two steady
states (x1, λ1) y (x2, λ2). Since functions x → F (x)/x and λ → φα(λ) are decreasing, we have the
following equivalences:

x1 ≤ x2 ⇔
F (x2)
Nx2

≤ F (x1)
Nx1

⇔ φα(λ2) ≤ φα(λ1)⇔ λ1 ≤ λ2.

On the other hand, it is easy to verify that function Φ is increasing on ]λ̄β, p[. Consequently, we
also have the equivalences:

λ1 ≤ λ2 ⇔ Φ(λ1) ≤ Φ(λ2)⇔ F ′(x1) ≤ F ′(x2)⇔ x2 ≤ x1.

We thus conclude that x1 = x2 and λ1 = λ2.

A.2 Proof of Proposition 3.4

For a given β ∈ (0, 1), the Jacobian matrix of the right-hand-side function of (2.8), at the steady
state (x∗(β), λ∗(β)), is given by

J(β) := J(x∗(β), λ∗(β)) =

 F ′(x∗(β))− F (x∗(β))
x∗(β)

αF (x∗(β))
β(p−λ∗(β))

−λ∗(β)F ′′(x∗(β)) r − F ′(x∗(β)) + F (x∗(β))
x∗(β)

 . (A.4)
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The determinant of J(β) is then computed as follows

det(J(β)) = A(β)− B(β)
β

, (A.5)

where

A(β) :=
(
F ′(x∗(β))− F (x∗(β))

x∗(β)

) (
r −

(
F ′(x∗(β))− F (x∗(β))

x∗(β)

))
, , (A.6)

B(β) := −λ∗(β)F ′′(x(∗β))
αF (x∗(β))
(p− λ∗(β))

. (A.7)

So, since F is strictly concave and λ(β) > 0, it follows that A(β) < 0 and B(β) > 0. We thus obtain
that det(J(β)) < 0. On the other hand, the trace of J(β) is constant and equal to r, which is a
positive value. These two conditions hold on J(β) if and only if its two eigenvalues are real numbers
with opposite signs, that is, the steady state (x∗(β), λ∗(β)) is a saddle point of system (2.8).

A.3 Proof of Proposition 4.1

We have seen in Section A.2 (see equation (A.5)) that det J(β) < 0, for all β ∈ (0, 1), where J(β) :=
J(x∗(β), λ∗(β)) is the Jacobian matrix of the RHS of (2.8) at the steady state (x∗(β), λ∗(β)). Hence,
the implicit function theorem implies the existence of two continuously differentiable mappings of
β, simply denoted here by x :]0, 1[−→]x̄,+∞[ and λ :]0, 1[−→]0, p[ (the range sets of these functions
are obtained in Lemma 3.1), satisfying (4.4).

A.4 Proof of Proposition 4.3

Proposition 4.1 implies that x(β) and λ(β) remain in the compact set C = [xr,K]× [0, p]. Hence,
in order to prove the convergences of x(β) and λ(β), we only need to prove that any converging
subsequence has xr and p − c, respectively, as their limit points. Consider then any sequence βk
converging to zero, when k → +∞, such that x(βk) → x̃ and λ(βk) → λ̃ for some x̃ and λ̃ in C.
Since λ̄β → p− c when β → 0 (see Proposition 4.1), we can ensure that λ̃ ≥ p− c > 0. Moreover,
first equation in (4.1) gives us the following relation:

λ(β) = p−
(

c

1− β

)(
F (x(β))
Nx(β)

) β
1−β

,

which implies that λ̃ = p− c provided that F (x̃) 6= 0.
Let us prove this claim. We argue by contradiction. Suppose that F (x̃) = 0, then we obtain

from (4.1) that λ̃(F ′(x̃)− r) = 0, and consequently F ′(x̃) = r. This holds only if x̃ = xr (because,
since F es strictly concave, x = xr is the only point satisfying F ′(x) = r). However, this contradicts
the fact that F (xr) 6= 0 (otherwise F (x) < 0 for all x < xr close enough to xr which contradicts
the positivity of F on [0,K]). Hence λ̃ = p− c. The second equation in (4.1) allows us to conclude
that x̃ = xr. The desired convergences of x(β) and λ(β) are thus established.

Finally, the convergence of u(β) follows directly from equality (4.3).
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A.5 Proof of Proposition 4.5

From the implicit function theorem, the derivative of x(β) can be computed as follows

dx(β)
dβ

=
N

β det J(β)

[
−F (x(β))
Nx(β)

(
1

1− β
ln
(
F (x(β))
Nx(β)

)
+ 1
){

rx(β)− x(β)F ′(x(β)) + βF (x(β))
}

− (1− β)
F (x(β))2

Nx(β)

]
,

where J(β) := J(x(β), λ(β)) is the Jacobian matrix of the RHS of (2.8) at the steady state
(x(β), λ(β)). On the other hand, equation (A.5) establishes that det J(β) = A(β) − B(β)/β < 0,
for all β ∈ (0, 1), where A(β) and B(β) were described in (A.6) and (A.7), respectively. By noting
that

lim
β→0

A(β) =
(
r − F (xr)

xr

)
F (xr)
xr

lim
β→0

B(β) = −(p− c)F ′′(xr)
F (xr)
c

,

we conclude β det J(β) → (p − c)F ′′(xr)F (xr)
c , when β → 0. This limit value is negative because

the strict concativity of F . Therefore,

lim
β→0

dx(β)
dβ

= − cF (xr)
F ′′(xr)(p− c)xr

> 0.

Analogously, from the implicit function theorem, the derivative of λ(β) can be computed as
follows

dλ(β)
dβ

=
N

β det J(β)

[
−F (x(β))
Nx(β)

(
1

1− β
ln
(
F (x(β))
Nx(β)

)
+ 1
)
{λ(β)F ′′(x(β))x(β)

+ β

(
F ′(x(β))− F (x(β))

x(β)

)
(p− λ(β))} + β

(
F ′(x(β))− F (x(β))

x(β)

)
(p− λ(β))

F (x(β))
Nx(β)

]
.

Hence
lim
β→0

dλ(β)
dβ

= −c
[
ln
(
F (xr)
Nxr

)
+ 1
]
.

We have thus concluded (4.5) and (4.6).
Finally, from (4.5) and (4.6), we deduce that dx(β)

dβ > 0 and that dλ(β)
dβ has the opposite sign of

ln
(
F (xr)
Nxr

)
+ 1 when β is small enough. The theorem follows.

A.6 Proof of Proposition 4.6

Propositions 4.3 and 4.5 imply that x(β) decreases to xr when β → 0. This in particular implies
that F ′(x(β)) > 0 and dx(β)

dβ > 0 when β is small enough. Hence, we obtain from (4.3) that

∂h(x(β), u(β))
∂β

= F ′(x(β))
dx(β)
dβ

> 0, for all β small enough.
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A.7 Proof of Proposition 4.7

The partial derivative of h with respect to u is given by

∂h

∂x
(x, u) = Nβ

(u
x

)1−β
.

Therefore, at the equilibrium (x(β), u(β)), it holds that

∂

∂β

(
∂h

∂x
(x(β), u(β))

)
= N

(
u(β)
x(β)

)1−β (
1− β ln

(
u(β)
x(β)

))
.

However, it follows from (4.2) that β ln
(
u(β)
x(β)

)
= β

α ln
(
F (x(β))
Nx(β)

)
, which tends to 0 when β → 0. We

thus conclude that ∂
∂β

(
∂h
∂x(x(β), u(β))

)
is positive when β is small enough.

A.8 Proof of Proposition 4.8

The partial derivative of h with respect to u is given by

∂h

∂u
(x, u) = αN

(x
u

)β
.

Then, at the equilibrium (x(β), u(β)), we obtain from (4.2) the expression

∂h

∂u
(x(β), u(β)) =

Nc

(p− λ(β))
,

and relation (4.7) is obtained by deriving the above equality with respect to β.

A.9 Proof of Proposition 4.10

Define the function ζ(β, x, u) = F (x)−Nu(1−β)xβ . From (4.3) one has that

ζ(β, x(β), u(β)) = 0 ∀ β ∈ (0, 1).

Deriving this equality with respect to β we obtain

∂βζ + ∂xζ
dx

dβ
+ ∂uζ

du

dβ
= 0. (A.8)

It is straightforward to check that the partial derivatives of the function ζ are given by:

∂βζ =
Nu

α

(x
u

)β
ln
(
F (x)
Nx

)

∂xζ = F ′(x)− βF (x)
x

∂uζ = −Nα
(x
u

)β
.

So, Proposition 4.3 implies that ∂βζ → F (xr) ln
(
F (xr)
Nxr

)
, ∂xζ → r, ∂uζ → −N when β → 0. These

limits, expression (4.5) for the limit of dx
dβ when β → 0, and (A.8) give us the desired result.
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