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Abstract

This paper studies observational learning in a consumer search environ-

ment. In our model, consumers observe the purchasing decision of a prede-

cessor before deciding which firm to visit. We show that if consumers emulate

their predecessor and initiate their search at the firm she purchased from, a

social multiplier of demand induces a lower equilibrium price. Further, as the

search cost increases, firms compete fiercely to attract consumers and prices

converge to the marginal cost. We show that the result can be extended to any

number of firms, and the effect of emulation on prices is stronger as the number

of firms increases. We also show that, as consumers observe more previous

purchasing decisions, the downward pressure on prices grows to the degree

that the pure strategy equilibrium may cease to exist. We then provide a ra-

tionale for emulation by introducing positive correlation in preferences across

consumers. This correlation gives rise to free-riding which deters search, and

as a result puts further downward pressure on prices for high search cost.
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1 Introduction

Observational learning has been the object of study of a large and important litera-

ture in economics since the seminal contributions of Banerjee (1992) and Bikhchan-

dani et al. (1992). In the classical model, a sequence of individuals faces a simple

decision problem under uncertainty and each individual observes the history of de-

cisions of her predecessors. As argued by Banerjee (1992), this simple environment

resembles the problem faced by consumers in markets where previous consumers’

choices may be informative about the relative value of different products. Search

markets, where consumers actively engage in costly activities to gather information

about different alternatives, are prominent examples of such environments. Intu-

itively, consumers may free ride on the search effort of their predecessors, initiating

their search in the firm their predecessor purchased from. In a sequential search

environment, this form of emulation induces a social multiplier of demand, because

consumers are more likely to purchase the good from the firm they visit first. It is

a priori unclear whether, and to what extent, emulation and free-riding will play a

role in firms’ pricing decisions.

To the best of our knowledge, no paper has studied this issue. We attempt to

bridge this gap with a simple oligopoly model of search with heterogenous prod-

ucts in the spirit of Wolinsky (1986) and Anderson and Renault (1999) (henceforth

ARW). In the simplest version of the model, a large number of consumers derive

utility from consuming a single unit of a given good that comes in two different

varieties, each sold by a different firm. Consumers are initially uninformed about

their valuation for each variety or the price charged by each firm, but may learn

these after engaging in costly sequential search. The search procedure is particu-

larly simple: consumers visit one firm at random and buy there without further

search if their surplus exceeds a certain cutoff. Otherwise, they visit both firms and

buy from the highest surplus-offering firm. Firms take consumers’ behavior as given

and choose prices simultaneously to maximize expected profits.

We depart from this model by informing each consumer of the purchasing deci-

sion of a single predecessor. Importantly, consumers do not observe whether their

predecessor visited other firms nor the price they paid. We further assume that

they visit first the firm offering the variety their predecessor bought. This be-

havioral modification, which we refer to as emulation, amounts to a change in the

tie-breaking rule used in ARW and it is consistent with recent evidence in economics

and marketing. For instance, Miller and Mobarak (ming) conduct a marketing in-

tervention in Bangladesh to assess how stove adoption is affected by social learning.

They show that some households are more likely to adopt the new technology if

they are informed of the purchasing decision of an important member of their com-
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munity. In another field experiment, Cai et al. (2009) show that restaurant-goers

are more likely to order those goods that are presented to them as more popular.

Similarly, Moretti (2011) analyzes the movie market where an unexpected increase

in the first-week’s box office revenue has a persistent and significant effect on future

attendance. Finally, Zhang (2010) shows that patients waiting for a kidney draw

negative quality inferences from earlier refusals in the queue, thus becoming more

inclined towards refusal themselves.1

Strikingly, this small, yet realistic modification drastically changes equilibrium

outcomes. An individual consumer is more likely to start her search in a given

firm the higher its market share, linking individual demand to aggregate demand

(conditional on the vector of prices.) Because of this social multiplier, firms lower

prices not only to retain incoming consumers (as in ARW) but also to increase the

number of consumers they attract through emulation. We show that the resulting

(symmetric) equilibrium markup is a fraction of the price in ARW. We further show

that this fraction depends on the magnitude of the social multiplier, it is decreasing

in search costs and it converges to zero as the cost of search increases. Higher search

cost exacerbates the impact of emulation because the share of captive consumers

(those who never search) increases. In the ARW model, firms have monopoly power

on this segment so that, as the proportion of these consumers increases, prices tend

to increase. In our model, however, the likelihood that one such consumer visits a

given firm depends on the firm’s share among those consumers who actively search.

Since firms cannot price-discriminate between the two groups, as the proportion of

consumers who stop at the first firm increases, firms engage on increasingly fierce

fight for searchers, leading to Bertrand-like competition and eventually to prices

that can be as low as the marginal cost.

We then extend this result in two important dimensions. First, we consider

the role of competition. Armstrong and Zhou (2011) show that, as long as it is

exogenous, the order of visits has no effect on equilibrium prices as the number of

firms grow. In our model, however, regardless of the number of firms, the equilibrium

price decreases in the search cost and, whenever the latter is sufficiently high, it

converges to the marginal cost. Furthermore, the ratio of the price in the ARW

model to the price in our model increases with the number of firms, suggesting that

the effect we uncover is stronger in more competitive markets. Second, we enrich the

model by enlarging the set of predecessors that a new consumer observes. This has

two main effects. First, it puts further downward pressure on prices since small price

deviations trigger larger changes in the number of first visits, leading to a bigger

social multiplier of demand. Thus, as long as pure strategy equilibria exist, prices

1For a recent discussion on the huge literature on social learning see Möbius and Rosenblat
(2014).
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are lower. Importantly, however, the only candidate to a pure-strategy equilibrium

price converges to zero before the share of searchers vanishes. This is inconsistent

with optimality since firms retain (some) monopoly power in the segment of those

consumers who visit both firms. Therefore, pure strategy equilibrium fails to exist

in environments with sufficiently rich observational learning.2

In light of these results, we then introduce ‘proper’ learning in the model. To do

so, we assume that consumer valuations for each variety are positively correlated,

but valuations across firms remain independent. More precisely, we assume that the

valuations that consumers derive from the variety offered by each firm are drawn

from one of two distributions, one of which (High) stochastically dominates the

other (Low). Assuming that neither firms nor consumers observe which distribution

is realized, we can focus on the effect of learning in consumer behavior and prices. 3

Note that observing a predecessor buying a given variety leads to an upwards update

of its distribution of valuations and a downwards update in the rival’s distribution.

Hence, consumers are now willing to accept a lower surplus from their first visit, thus

reducing search effort. We term this the free-riding effect of observational learning.

The total effect of learning on equilibrium prices is not straightforward. On the

one hand, as explained above, less search leads to higher competition because the

social multiplier becomes more important. On the other hand, a price deviation

triggers a change of beliefs that may overcome this effect. If a firm deviates to a

higher price, the proportion of sales in each demand state changes, thus changing

the posterior belief that consumers hold about the other firm’s distribution. Since

the elasticity of demand is lower for the firm with a higher distribution of valuations,

consumers become more pessimistic about its rival’s distribution the higher the price

of the firm they visit. Hence, the surplus (net of the price) they demand for buying

right away decreases in the price, reducing the elasticity and increasing prices. We

show that for uniform distribution the first effect is stronger for relatively small

search costs while for sufficiently high search costs the second effect dominates and

prices may be even lower than in the model without correlation of preferences.

Indeed, we show that for any distribution function, as long as the likelihood ratio is

unbounded at the lower bound, the equilibrium price converges to marginal cost for

smaller search costs than in the baseline model.

2As we discuss in detail later, this result is closely related to the mixed strategy equilibrium
described by Armstrong and Zhou (2011), who assume that consumers observe prices before they
embark on their first search.

3This rules out signaling motives for prices. One possible interpretation of our model would
then be a sub-market within a larger economy. Each sub-market draws its state independently
and all social interactions occur within its limits.
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Literature Review

Several recent papers have analyzed consumer search with observational learning,

but they all assume that prices are fixed exogenously. Kircher and Postlewaite (2008)

study consumers who differ in their willingness to search among that firms differ in

quality. Although prices are fixed, firms may decide to offer a valuable service (an

exogenously fixed discount) to any consumer who visits their store. Kircher and

Postlewaite show that equilibria may arise where high-quality firms offer a discount

to those consumers who search more actively and those who search less actively

follow their advice. Hendricks et al. (2012) present a model of observational learning

with multiple types in the spirit of Smith and Sørensen (2000), where each consumer

has to decide between acquiring a costly signal about the quality of a single good,

buying it right away, or not buying. They focus on the long-run dynamics of sales

for high and low quality products and the possibility of bad herds arising.4

In the consumer search literature with price competition, the closest papers to

ours are Armstrong et al. (2009) and Armstrong and Zhou (2011), who present

a model of prominence in consumer search where one firm is sampled first by all

consumers. In Armstrong et al. (2009) a given firm is made prominent exogenously.

In the resulting equilibrium, the prominent firm charges a lower price than her rivals

because her share of returning customers (who are typically less responsive to prices)

is lower. One may view our framework as that of endogenous prominence, where the

share of first visits depends on the price. Armstrong and Zhou (2011) study several

different models that rationalize prominence. One such model is based on observable

price competition where consumers rationally search the lowest-pricing firm first.

Because demand is discontinuous in prices, the resulting equilibrium involves mixed

strategies and has a property that higher search cost leads to (stochastically) lower

prices. One may view observability of prices as an extreme example of observational

learning where consumers observe market shares that are a sufficient statistic for

the price ranking. We show that as long as this signal is sufficiently noisy, pure

strategy equilibrium still exists. Finally, another closely related model can be found

in Haan and Moraga-Gonzalez (2011), where prominence depends on advertising

efforts and firm profits may decrease in search cost (although prices increase and

consumer surplus decreases in the symmetric case).

Our paper is also related to the literature on pricing in the presence of social

learning. Galeotti (2010) studies a model of non-sequential search with homogenous

goods whereby consumers exchange price information in a network. In a mixed-

strategy equilibrium, consumers free-ride on others’ search efforts. As a result,

when search costs are low, an increase in interpersonal communication leads to

4See also Ali (2014) and Mueller-Frank and Pai (Mueller-Frank and Pai) for related models.

5



higher rather than lower prices. Campbell (2013) and Chuhay (2010) analyze the

impact of word-of-mouth communication on monopoly pricing and product design.

Bose et al. (2006) study a dynamic interaction between a monopolist and a sequence

of consumers with common valuation who observe each other’s purchasing decisions.

In a related effort, Kovac and Schmidt (2014) study a dynamic market where two

firms offer a homogenous product and consumers learn prices from others. Since our

focus is on competition and we abstract from dynamic issues, we view our work as

complementary to this strand of the literature.

The recent literature on dynamic competition in the presence of switching costs is

also closely related. Several authors (e.g. Doganoglu (2010); Cabral (2013); Rhodes

(2014)) have shown that switching costs may have a pro-competitive effects because

the incentive to “invest” in attracting consumers may prevail over the incentive to

“harvest” profits from a locked-in consumer base. This is similar in spirit to our

result that prices are lower with higher search cost, but unlike this literature our

model does not allow for harvesting because the price is the same for all consumers.5

Moreover, we show that the price can be as low as the marginal cost, an outcome

that cannot be obtained with switching costs because the harvesting effect is never

completely mute.

Finally, a number of papers have studied the relation between current mar-

ket shares and future demand. Becker (1991) introduces aggregate demand as an

argument of the individual demand function. Our model provides a simple micro-

foundation for such an assumption and derives novel implications. Caminal and

Vives (1996) studies a dynamic signaling game where new cohorts of consumers

observe past market shares of an experience good, but not prices and try to infer

quality from this information. Firms use prices to manipulate market shares to at-

tract consumers. While their setting is different in that consumers do not search,

we also find that firms use prices to attract consumers, but here consumers free-ride

on their predecessors’ efforts and due to search cost, herds form, while in Caminal

and Vives these effects are mute.

The reminder of the paper is organized as follows. Section 2 introduces the

baseline duopoly model with simple emulation and characterizes the equilibrium.

We then extend the model to oligopoly in Section 3, and to more complex emulation

processes in Section 4. Section 5 introduces correlation in consumers’ preferences,

characterizes the equilibrium and derives comparative statics and welfare analysis.

Section 6 concludes. All proofs are contained in the Appendix.

5If firms commit to serve all consumers at the same price, switching costs are irrelevant.
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2 The Baseline Model

Consider a market populated by a countably infinite number of consumers interested

in purchasing a single unit of a differentiated good that comes in two varieties, each

sold by one firm, 1 and 2. Consumers are initially uncertain about their valuation

of each firm’s product, but may acquire this information through sequential search.

We assume that the first visit is free, but the second has a cost of c in utility units

and all consumers can recall their previously sampled varieties at no additional cost.

For each firm utilities are drawn according to a cumulative distribution G(u), with

a strictly positive and continuously differentiable density g(u) on a closed and finite

support [u, u].6 Realizations are independent between consumers and firms. We

assume that 1−G(u) is Log-concave on [u, u]. The outside option is assumed to be

sufficiently bad so that each consumer buys one unit regardless of prices.7

We assume that the market unfolds over time and consumers arrive to the market

sequentially. In particular, we assume that consumer i arrives to the market in

period i and leaves the market before the next consumer arrives. All consumers

with the exception of the first one do not know their arrival times and hold a

common prior ν(i) over it.8 We introduce observational learning by allowing each

individual consumer i > 1 to observe the purchasing decision of her predecessor i−1.

Importantly, and in line with the literature on social learning, i does not observe

her predecessor’s search behavior, only the purchase. Given this information, the

consumer decides which firm to visit first and finally decides where to buy. Consumer

i = 1 has no predecessor and, thus, has no additional information. Following ARW,

we assume that she chooses which firm to visit by flipping a coin.

Firms choose prices simultaneously at the beginning of the game in order to

maximize average expected discounted profits. Let xi(p1, p2) be the probability that

consumer i buys at firm 1 given the price pair (p1, p2). Then firm 1’s expected

discounted profit per consumer can be written as

Π1(p1, p2) = p1(1− δ)
∞∑
i=1

δi−1xi(p1, p2).

Notice that if δ = 0, the pricing problem is the same as in ARW because the

firm prices to the first consumer, who visits each firm with exogenous and equal

probability.

6Most of our results could be extended to infinite supports, provided that a regularity condition
on the Hazard Rate holds.

7See Appendix C for an extension where we introduce a relevant outside option.
8This assumption is completely innocuous for the model of this section where consumer val-

uations are not correlated, thus consumers cannot learn anything about the two options from
their position in the queue. It makes the model of Section 3 with correlated preferences far more
tractable. See also Footnote 18.
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In what follows we focus on the symmetric pure strategy (Perfect Bayesian)

Equilibrium.

2.1 Consumer Behavior

We shall assume that consumers will always follow their predecessor for the first

visit. This can be justified in three different ways. First, notice that in a sym-

metric equilibrium of this model, consumers are indifferent between following their

predecessor or going to the other firm. Thus, ARW can be considered as a special

case of our model whereby consumers ignore the actions of their predecessor and

choose randomly. This behavior, however, fails to satisfy trembling-hand-perfection

refinement because, if firms may make pricing mistakes, then following the prede-

cessor is strictly preferable. Second, this model can be thought of as the limit of

a more general model (provided in Section 5) where consumers’ utilities are posi-

tively correlated, and so the predecessor’s purchasing decision is informative about

the distribution of utilities at both firms. Finally, following a predecessor could be

supported as a social norm among consumers. As we shall show in this section, such

social norms can plausibly emerge since consumers pay lower prices if they follow

them.

Let p∗ denote the symmetric equilibrium price. If firm 1 charges p1 6= p∗ while

consumers expect the other firm to charge p∗, then a consumer who visits it first will

search further if and only if her utility realization u1 at firm 1 is below ŵ − p∗ + p1

where ŵ solves ∫ ū

ŵ

(u− ŵ)g(u)du = c. (1)

If no solution exists, then set ŵ = u. Notice that as c increases ŵ decreases. Define

c̄ as

c̄ ≡
∫ ū

u

(u− u)g(u)du, (2)

which is the expected benefit from further search for a consumer who draws the

lowest possible utility. Clearly if c exceeds c̄ there is no search in equilibrium.

Therefore, from now on, we assume that c < c̄.

The consumer who arrives in period 1 has no a priori information to discriminate

firms. She makes her first visit randomly and buys at the first firm if and only if

ui1 − p1 > ŵ − p∗ and searches the other firm otherwise. All remaining consumers

observe a predecessor buying from firm j ∈ {1, 2} and expect the same price p∗ at

both firms before embarking on their first search. Since predecessors’ choices are not

informative about unobserved prices or utilities, once at the first firm, consumers
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use the same reservation utility ŵ − p+ p∗.

2.2 Equilibrium

In order to write firm 1’s market share in period i (i.e the probability a consumer

buys from firm 1 in the period) let us first introduce two objects, M1 and M2 as the

probability that a consumer who makes her first visit to firm 1 and 2, respectively,

purchases at firm 1. These probabilities can be written as

M1(p1, p
∗) = (1−G(ŵ + p1 − p∗)) +

∫ ŵ+p1−p∗
u

G(u− p1 + p∗)g(u)du (3)

M2(p1, p
∗) = G(ŵ)(1−G(ŵ + p1 − p∗)) +

∫ ŵ+p1−p∗
u

G(u− p1 + p∗)g(u)du. (4)

The expression for M1(p1, p
∗) includes consumers who buy outright after a utility

draw above ŵ+p1−p∗ (the first term) and consumers who continue to firm 2 but come

back (the second term). M2(p1, p
∗) is composed of those consumers who visit firm 2,

draw a utility below ŵ and go on to firm 1. Of these, consumers with utility draws

at firm 1 above ŵ+p1−p∗ all buy from firm 1 (the first term), whereas all remaining

consumers have to compare prices and utility levels (the second term). First visits

are valuable because some consumers buy outright, i.e., M1(p1, p
∗) ≥M2(p1, p

∗).

Using this notation, and suppressing terms in brackets while noting that xi and

Mj depend on prices, the probability that consumer i (who observes the purchasing

decision of consumer i− 1) purchases from firm 1 can be written as

xi = xi−1M1 + (1− xi−1)M2 = M2 + xi−1
(
M1 −M2

)
, (5)

with a convention that x0 = 1/2.9 Consumer i first visits firm 1 with probability

xi−1 and buys there with probability M1. She may also buy at firm 1 after having

visited firm 2 first, which happens with probability M2. The last expression clearly

shows the value of being the first to be visited. Firm 1’s market share is M2 plus

the extra consumers it gains because they have visited it first, and thus bought with

an increased probability M1 −M2 > 0.

We use the recursion in (5) to obtain the closed form expression for xi for i ≥ 2

as

xi =
(1−M1 −M2)(M1 −M2)i + 2M2

2(1− (M1 −M2))
. (6)

We can now use (6) to compute the discounted per consumer market share

9The first consumer visits either firm with equal probability.
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(demand) of firm 1 that can be written as

Q1(p1) = (1− δ)
∞∑
i=0

δi−1xi =
M1 +M2 − δ(M1 −M2)

2(1− δ(M1 −M2)).
(7)

The expected discounted demand is a combination of the demand of early consumers

(whose visiting probabilities are closer to random) and the demand of all the later

arriving consumers, who are allocated according to the stationary market shares.

The difference between these groups stems from those consumers whose utility real-

izations are such that, regardless of the firm they visit first, they buy there. If these

consumers do not observe previous purchases, they buy in each firm with probability

1/2. If they observe a predecessor, however, they buy at each firm with the proba-

bility that a searcher buys at that firm (since they are following them, or following

others who follow them, etc.) Thus, their price elasticity is higher the later they

arrive in the queue.

Notice also that this profit function includes the demand function of Anderson

and Renault (1999) as a special case. In particular, when δ → 0, this becomes

Q1(p1) =
1

2
(M1 +M2), (8)

the familiar demand equation in the ARW model. Recall that in ARW each firm is

equally likely to be visited first by a consumer. Half of them make the first visit to

firm 1 and purchase with probability M1, while the other half make the first visit to

firm 2, and purchase from firm 1 with probability M2.

At the other extreme where δ → 1, initial individuals whose visiting probabilities

are not equal to the stationary ones are no longer relevant and we obtain

Q1(p1) =
M2

1− (M1 −M2)
. (9)

To gain some intuition for this expression, notice that in this model there are

two types of consumers: those who buy in the store they visit first (captives) and

those who buy in the store that offers them the highest surplus (searchers). The

demand of the first group is driven by the choice of the most recent searcher in the

queue. Thus, demand of both searchers and captives is entirely determined by the

firm’s share of searchers. This share is the probability that a consumer buys from

that firm if she does not visit it first (M2) divided by the total mass of searchers,

which is given by 1 − (M1 −M2). To see this, recall that M1 −M2 captures those

consumers who buy in firm 1 only if they visit it first, i.e. consumers who always

buy in the first store they visit. Notice also that in a symmetric equilibrium we have

M1 +M2 = 1 and thus the demand is 1/2 regardless of δ.
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The following definition, inspired by the literature on social interactions (e.g.

Manski (1993), Glaeser et al. (2003)) turns out to play a crucial role in our analysis.

Definition 1. The social spillover, η, is the increase in the probability that consumer

i buys in a firm given that her predecessor bought there. Therefore, γ = η
1−η is the

social multiplier of demand and captures the total additional demand obtained from

one extra purchase.

In this baseline model, η = M1 −M2, which represents the change in the proba-

bility that consumer i purchases at firm 1, given that she visited it first rather than

second. Because each consumer’s increased purchasing probability at firm 1 leads to

an increase in the probability of a first visit (and thus purchase) by her successor, the

total additional demand, or the social multiplier of demand, is γ =
∑∞

i=1 η
i = η

1−η .

Since M1 and M2 are probabilities and M1 ≥ M2, η ranges from 0 to 1, whereas γ

ranges from 0 to infinity.

Before we provide the equilibrium characterization, it is convenient to define

p̂ as the symmetric equilibrium price in the ARW model (δ → 0 in our model)

which can be obtained by taking the derivative of Q1(p1) given by (8) with respect

to p1, imposing full symmetry (p1 = p∗ and Q1(p∗) = 1/2) and noting that p∗ =

−Q1(p∗)/Q′1(p∗). This gives the familiar

p̂ =
1

2
∫ ŵ
u
g(u)2 du+ (1−G(ŵ))g(ŵ)

. (10)

As shown in Anderson and Renault (1999), p̂ is increasing in c for all c < c̄.

We shall assume that G(u) is well-behaved so that Π1(p1, p
∗) is concave in p1.

This is not guaranteed by the log-concavity of g(u) as is the case in the ARW

model.10 We shall go back to this issue later in the section.

Now we are ready to characterize the symmetric equilibrium price for any δ (p̂

is the price for δ = 0).

Proposition 1. In equilibrium, both firms charge

p̃ = (1− δη∗) · p̂,

where η∗ = (1 − G(ŵ))2 ≤ 1 is the social spillover in equilibrium. Thus, for any

δ > 0 and c > 0 we have p̃ < p̂.

10In Section 4, where we study more general observational learning models, we show that the
profit function is not concave if consumers observe more than 1 predecessor for sufficiently high
c and regardless of G(u). While we are able to show that the profit function is concave for
the uniform F , we were unable to formulate the condition in general because the profit function
includes fractions of G(u) and thus is not easily characterized by methods used in this literature.
For example, Armstrong et al. (2009) solve their prominence model for a finite number of firms
only for the uniform distribution.
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Proof. All proofs are provided in the Appendix.

As δ increases, the weight of the initial batch of individuals in the discounted

expected demand decreases and demand is increasingly dependent on the stationary

market shares. As already mentioned, the latter depends only on the behavior of

searchers. Since searchers are more price-elastic, prices decrease in δ. Intuitively,

a price reduction leads to a sequence of demand increases through emulation that,

when discounted to present, result in 1
1−δη∗ extra demand, thus the price in the

model with emulation is (1− δη∗) times the price in ARW.

The comparative statics of the equilibrium price with respect to search costs is,

perhaps, more surprising.

Proposition 2 (Comparative Statics). In the symmetric equilibrium, the following

holds:

(i) p̃ is increasing in c when c is is sufficiently low.

(ii) There exists a threshold δ̄ < 1 such that for all δ ∈ (δ̄, 1), p̃ decreases in c when

c is sufficiently high.

(iii) As δ → 1 and c→ c̄, p̃ converges to zero.

As the search cost increases, first visits become more attractive, but the mass

of searchers, consumers who compare both prices and thus react to price differ-

ences, decreases. Moreover, searchers have very low valuations relative to prices,

so small price reductions attract their large share. The net effect on equilibrium

prices depends on the weight that searchers have on total profits. As δ increases,

searchers become more and more important and price elasticity increases, inducing

lower prices. Indeed, as c → c̄ and δ → 1 prices approach zero (i.e. the marginal

cost). Intuitively, when almost no consumers search, the fact that consumers follow

each other induces a Bertrand-like competition for the few consumers who do search

and react to prices. These consumers are extremely price sensitive (they have very

low utility realizations in both firms), and their successors are unlikely to search

giving further advantage to the firm that retains them. Indeed, recall that the (to-

tal) social multiplier of demand, γ, converges to infinity as c → c̄, leading to the

marginal cost pricing for δ → 1.

This is a rather surprising result. In the ARW model without observational

learning, a higher search cost relaxes price competition and results in a higher price,

whereas in the model with observational learning (δ sufficiently high), exactly the

opposite is true. The result is related to Armstrong and Zhou (2011) where the

average equilibrium price is decreasing in search cost. The main difference is that in
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their model consumers observe prices, whereas here they observe each-other’s pur-

chasing behavior. Thus our contribution here is to show that observational learning

is qualitatively similar to price advertising.

For illustration, consider Figure 1 that depicts equilibrium prices as a function of

the search cost for uniformly distributed valuations in the baseline model with δ → 1

and δ → 0. As per Proposition 2, the price is increasing in the search cost starting

at zero for both levels of δ. For δ → 0 (ARW model) prices continue to increase for

the whole range of the search cost. In the model with emulation, however, as δ → 1

the price eventually decreases in c, and in the limit goes to zero as c→ c̄.11

It remains to be shown that p̃ is indeed an equilibrium. In the Proof of Propo-

sition 1 we establish that the profit function is locally concave for any log-concave

distribution and globally concave for the uniform distribution. We also show that,

in any symmetric equilibrium, and for any distribution function, the lower bound of

the price distribution converges to zero as c→ c̄. This implies that expected profits

vanish as search costs grow large.

c

ŵ

p̃

p̂

0.1 0.2 0.3 0.4 0.5
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0.4

0.6

0.8

1.0

Figure 1: The equilibrium price in the baseline model for δ → 1 (p̃, black) and for
δ → 0 (p̂, gray). The dashed curve depicts the reservation utility ŵ.

Before we proceed, two points should be noted. First, we have assumed that firms

commit to serve all consumers at the same price. In models of social learning, firms

may use dynamic or stochastic pricing schemes in order to maximize inter-temporal

profits. This assumption, however, can be justified if price-adjustment is slow when

compared to the speed of learning among consumers. Indeed, in this baseline model,

cumulative demand affects current demand only through the purchasing decision

of the last individual. Therefore, even if firms were able to adjust prices every N

cohorts, as N grows, marginal cost pricing obtains. Moreover, as shown in Campbell

(2013), dynamic considerations would reinforce some of our results since firms would

be willing to offer low prices to newcomers in order to attract future demand.

11For G(·) ∼ U [0, 1], c̄ = 0.5.

13



Second, in this simple model, total welfare is unaffected by the introduction of

emulation. In a symmetric pure strategy equilibrium, consumers extract no useful

information from the purchasing decision of their predecessor and prices are irrele-

vant since the market is fully covered.12 Nevertheless, consumers are better off (and

firms are worse off) in the presence of emulation, the higher the discount factor.

Therefore, emulation may emerge as a beneficial social norm through a process of

social experimentation.

3 The Effect of Competition

We now extend the model of the previous section to the case of an oligopoly with

n firms. The aim is to understand whether the social multiplier of demand is still

relevant in more competitive markets. For the sake of comparison, the reader should

keep in mind that in the model where the order of first visits is exogenously deter-

mined (e.g. Armstrong et al. (2009)), the effect of prominence completely disappears

as the number of firms in the market grows.

For ease of exposition, we focus in the remainder of the paper on the two polar

cases where δ → 0 and δ → 1. In the latter case, profits depend on the stationary

market shares, while the former case is identical to ARW and serves as a useful

benchmark.

We now proceed in a similar fashion as before. We first define M1 and M2 for this

more general model. Recall that M1 and M2 are the probabilities that a consumer

buys from firm 1 if she makes her first visit to firm 1 and any other firm, respectively.

These are given by

M1(p1, p
∗) = (1−G(ŵ + p1 − p∗)) +

∫ ŵ+p1−p∗
u

G(u− p1 + p∗)n−1g(u)du (11)

M2(p1, p
∗) = (1−G(ŵ+p1−p∗))

n−1

∑n−1
j=1 G(ŵ)j +

∫ ŵ+p−p∗
u

G(u− p1 + p∗)n−1g(u)du.(12)

M1 is similar to the one from duopoly. M2 accounts for the fact that a consumer

may arrive at firm 1 after having visited 1 to n− 1 other firms.

Consider δ → 1. If firm 1 sets price p1 and if all of its rivals set p∗, the firm’s

stationary market share x(p1, p
∗) can be computed as

x(p1, p
∗) =

M2(p1, p
∗)

1− (M1(p1, p∗)−M2(p1, p∗))
,

which is analogous to (9).

12This is not true in the model of Appendix C, where we consider an extension of our model
where consumers have a zero outside option.
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For δ → 0, as before,

x(p1, p
∗) =

M1(p1, p
∗) +M2(p1, p

∗)

2
,

and the equilibrium price can be computed by equating marginal revenue to zero

and imposing symmetry. This yields the familiar ARW price in oligopoly

p̂n =
1

n
( ∫ ŵ

u
(n− 1)G(u)n−2g(u)2 du−G(ŵ)n−1g(ŵ)

)
+ (1−G(ŵ)n)g(ŵ)

1−G(ŵ)

. (13)

Before we solve for the price for δ → 1, we compute the social spillover of demand

for oligopoly as follows

η∗n = M1(p∗, p∗)−M2(p∗, p∗) = 1− nG(ŵ)−G(ŵ)n

n− 1
. (14)

That is, the social spillover is now the difference between the probability that a

consumer purchases in store 1 if she visits it first rather than later. We can therefore

extend Proposition 1 to the oligopolistic competition for the special case where

δ → 1.

Proposition 3. In the symmetric equilibrium, all firms charge

p̃n = (1− η∗n) · p̂n,

where η∗n = 1− nG(ŵ)−G(ŵ)n

n−1
≤ 1, thus for any c > 0 we have p̃n < p̂n. Further, both

p̃n and p̂n, but also p̃n/p̂n are decreasing in n.

Notice, therefore, that, as the number of firms grows, the relative gap between

prices in the model with and without emulation also grows, so that competition

strengthens its effect.

It is instructive to look at both models in the limit case where n → ∞. One

immediate implication of large n is that the share of returning consumers vanishes.

This greatly simplifies pricing in both models. As shown in Anderson and Renault

(1999), the ARW model with an infinite number of firms is effectively a model of

price competition with differentiated goods and so the price can be computed using

the following formula

p̂∞ =
1−G(ŵ)

g(ŵ)
. (15)

Here a firm optimally trades off the exploitation of the captives (represented by

1 − G(ŵ)) and the retention of searchers (g(ŵ)). In our model with emulation,
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however, for n→∞ the price is

p̃∞ = (1− η∗∞) · p̂∞ = G(ŵ) · p̂∞, (16)

and is strictly lower for any c > 0 since G(ŵ) < 1.

To better understand this pricing rule, note that in the ARW model with a large

number of firms, a unit price increase leads to a unit increase in the reservation

utility, resulting in g(ŵ) consumers leaving (and never returning). This trade-off

is resolved using the price in (15). In our model, a unit increase in price induces

a loss of g(ŵ) searchers, each of whom diverts an incoming consumer away from

the firm, never to return. Therefore, η∞ = 1 − G(ŵ). As search cost increases, by

log-concavity of 1 − G(w), 1−G(ŵ)
g(ŵ)

grows initially but eventually falls, leading to a

bell-shaped pattern in prices.

Figure 2 illustrates equilibrium prices for n = 2, 4, and ∞. As shown in Propo-

sition 3, prices decrease in n for a given search cost. Interestingly, in the limit case

where n → ∞, the market is perfectly competitive both when the search cost is

very low and when it is very high. In the former case, this reflects the fact that

consumers are willing to visit a large number of firms to find a suitable product and,

therefore, each of them has negligible market power. In the latter case, however,

very few consumers visit more than one firm, and thus, firms compete fiercely to

attract first visits. In other words, the equilibrium price in our model is the same

whether consumers make fully informed decisions (buying from the firm that offers

the highest surplus) or fully uninformed decisions (buying from the first firm they

visit).

p
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Figure 2: Equilibrium prices as a function of search cost for our model (black) and
the ARW model (gray) for n equal to two (solid), four (long dash) and infinity (short
dash). G(·) ∼ U [0, 1].

To close this section, we note that the oligopoly model highlights how observa-

tional learning differs from prominence, where search order is exogenously given. In
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prominence models, prices differ across firms because they face different shares of

returning and incoming consumers and, therefore, different demand elasticities. As

shown in Armstrong et al. (2009), this difference vanishes as the number of firms

grows because the share of returning consumers goes to zero.13 As a result, the

(exogenously) determined order or prominence is irrelevant for prices (although it is

important for profits) with sufficiently many firms. In contrast, in our setting, even

when the number of firms grows large, the model with emulation features a lower

equilibrium price. This is because while firms do not price to returning consumers,

they do internalize the social multiplier of demand that arises through emulation.

4 The Strength of Social Interaction

We now relax the assumption that every consumer has access to the purchasing de-

cision of a single predecessor. In order to do so, we start with a reduced-form model

of social interaction. We simply assume that firm 1’s market share x determines

its share of first visits, denoted by z(x). For example, in the baseline model, each

consumer observes a single predecessor, so the firm’s market share and its share of

first visits are equal, hence z(x) = x.

Using z(x), firm 1’s demand can be written as

x(p1, p
∗) = z(x(p1, p

∗))M1(p1, p
∗) + (1− z(x(p1, p

∗)))M2(p1, p
∗). (17)

Assuming that z(x) is a well-behaved and differentiable function of x, we can use

implicit differentiation to solve for a candidate symmetric equilibrium. First, notice

that the social spillover is now defined as

η = z′(x)(M1 −M2).

The social spillover may be decomposed in two distinct terms. First, z′(x) captures

the marginal increase in the probability that a random consumer visits a given firm

as a function of cumulative demand. This term depends only on the structure of

the social interaction. Second, M1 −M2 captures the increase in demand accruing

to a firm with an additional first visit. This term depends on the distribution

of valuations and the search cost but it is independent of the structure of social

interactions. Notice finally, that in the baseline model, z′(x) = 1 so that η =

M1 −M2.

To find the putative equilibrium price, we equate firm 1’s marginal revenue to

13In this class of models, consumer go back to a firm they have visited only after they visit all
firms, which becomes very unlikely as n grows.
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zero and impose symmetry to write

p̃ = (1−
(
M∗

1 −M∗
2

)
z′(1/2))p̂ = (1− η∗)p̂. (18)

Again, the equilibrium price is a fraction of the ARW price. This fraction is

smaller, the larger the measure of non-shoppers, i.e. those who do not search re-

gardless of the firm they visit first, as represented by M∗
1 − M∗

2 = (1 − G(ŵ))2,

and the larger the marginal change in the probability of attracting one of them by

increasing the market share above half, z′(1/2). Given this, it is easy to see that the

equilibrium price derived in Section 2 for δ → 1 obtains for z′(1/2) = 1. The ARW

price obtains when z′(1/2) = 0, i.e. when the social multiplier of demand is zero.

The strength of social interactions as measured by z′(1/2) has a clear threshold.

If z′(1/2) exceeds unity, i.e. a share of first visits increases at least one for one

with the market share, then there exists sufficiently high search cost c, and thus

sufficiently low ŵ, such that the putative symmetric equilibrium price is equal to

the marginal cost. For learning models where z′(1/2) < 1, even for c so hight that

G(ŵ) = 0, the marginal cost pricing does not obtain. This is because the stationary

market share is never fully determined by the share of first visits, so that price

elasticities are always positive and, therefore, prices exceed marginal cost.

The flexibility of the z(x) formulation also allows for consumers to behave as

contrarians - i.e. they may go to the store where the predecessor has not purchased.

For instance, assume that each consumer observes one predecessor, and that con-

sumers always visit first the other firm. Then z(x) = 1 − x, so that z′(x) = −1.

This means that p̃ = (1 + (1 − G(w))2) p̂, which is higher than p̂, and p̃, but also

p̃/p̂, is increasing in c. In the limit where c → c̄, p̃ = 2p̂. As expected, contrarian

behavior increases prices by discouraging price reductions with a negative multiplier

of demand. This is more so when search cost is high, because losing first visits is

particularly damaging with high search cost, so firms are deterred from reducing

prices. This suggests that in a generalization of our model where consumer prefer-

ences are negatively correlated, prices will be higher with than without observational

learning.14

We now proceed to rationalize z(x) as the outcome of a micro-founded model

of social interaction. We assume that every consumer (except the first few) observe

an odd number (2k + 1) of randomly drawn predecessors, where k is a nonnegative

integer.15 We interpret k as a measure of the strength of social interactions in the

14Negative correlation results in free-riding in search, as in Section 5 where we study positive
correlation of preferences. Both the contrarian search behavior and the fact that consumers search
less due to free-riding lead to higher prices. Although we do not study a model with negative
correlation preferences, it can be developed in the same spirit as the model of Section 5.

15Similar results obtain when the number of observed predecessors is even. In that case there
are possibilities of a tie, that result in random search as in ARW. For instance, the model where
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market. The baseline model where each consumer observes a single predecessor

obtains when k = 0. We still assume that consumers emulate their predecessors, so

that they start their search in the firm where k + 1 of their predecessors bought.

Given that x is firm 1’s market share,16

z(x) =
2k+1∑
j=k+1

(
2k + 1

j

)
xj(1− x)2k+1−j

Taking the derivative with respect to x and evaluating it at x = 1/2 yields

z′(1/2) =
(1 + 2k)!

22k(k!)2
≡ ζ(k),

which is equal to 1 for k = 0 and increasing in k since

ζ(k + 1) =
3 + 2k

2(1 + k)
ζ(k) > ζ(k).

As k grows, the sample of previous observations becomes more precise and,

therefore, the probability that one of the firms is more popular in a given sample

becomes increasingly large the larger is its market share (as captured by ζ(k).)

Therefore, the price elasticity in a symmetric equilibrium explodes for a given c > 0.

Intuitively, as consumers observe many others, the firm’s share of first visits becomes

increasingly sensitive to its market share, leading to an ever higher social multiplier

of demand and ever lower price.

For every k there exists a measure of captive consumers (1−G(ŵ))2 corresponding

to a search cost c̄k such that the only candidate for a symmetric equilibrium price

is zero, i.e. c̄k solves 1 = ζ(k)(1−G(ŵ))2. Because ζ(k) is increasing in k and goes

to infinity, c̄k is decreasing in k and converges to zero as k goes to infinity. This

putative outcome, however, cannot be supported as an equilibrium for any k ≥ 1

because, in that case c̄k < c̄, and thus even though the putative symmetric price is

zero, a positive measure of consumers search. Because of the product differentiation,

a deviation to a higher price yields positive profits for any search cost c < c̄. Hence,

we have the following result.

Proposition 4. If a symmetric pure strategy equilibrium exists, both firms charge

p̃k = (1− η∗k) · p̂,

consumers observe two predecessors has exactly the same equilibrium as our baseline model where
they observe one predecessor.

16This probability is computed assuming that all draws are independent. The probability that a
randomly drawn predecessor shares a predecessor with one of her successors equals the clustering
coefficient of the resulting random network. This coefficient converges to zero as the number of
consumers grows.
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where η∗k = ζ(k)(1 − G(ŵ))2 ≤ 1, which is decreasing in k for any c > 0. For all

c ∈ [c̄k, c̄) no pure strategy equilibrium exists.

Notice then that the model presented in Section 2 exhibits the weakest social

interactions conducive to marginal cost pricing. Models with weaker interactions

result in positive profits for any level of search cost, while models with stronger

interactions result in lower prices and possibly mixed strategy equilibria. Indeed,

we have the following corollary of Proposition 4 using the fact that limk→∞ c̄k = 0.

Corollary 1. For any c > 0, there exists Kc sufficiently large such that for any

k ≥ Kc, no pure strategy equilibrium exists.

Whenever z′(1/2) > 1, the putative equilibrium price becomes zero for a search

cost well below the level where no consumers search. This immediately implies

no pure strategy equilibrium. We are unable to characterize the mixed strategy

equilibrium, but it is clear that as c→ c̄, the equilibrium distribution of prices will

converge to the marginal cost because,then, a price deviation above the marginal

cost leads to zero demand, and thus zero profit.

Figure 3 illustrates our results. It shows p̃ for the uniform distribution and

various levels of k. Solid black lines depict the equilibrium price, whereas dashed

gray lines show the putative equilibrium price that is not an equilibrium because an

upward price deviation exists. For k = 0, which corresponds to our baseline model,

the putative equilibrium price actually constitutes an equilibrium for all c < c̄. This

is not the case for sufficiently high c and any k ≥ 1. As per Proposition 4, for a

given c, whenever a symmetric pure strategy equilibrium exists, p̃ is decreasing in

k.
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Figure 3: The symmetric equilibrium price, putative (dashed gray) and actual (solid
black), for various sample sizes.

This result is closely related to Armstrong and Zhou (2011) who show that in a

search model if consumers observe prices prior to search, there is no pure strategy
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equilibrium in prices. The intuition stems from the fact that first visits are valuable

(M1 > M2) and, as a result, firms are willing to infinitesimally undercut each other

to get all of the first visits. But since some consumers search beyond the first firm,

firms have some monopoly power and thus a Bertrand outcome cannot constitute

an equilibrium. Corollary 1 describes a qualitatively similar result. As k grows,

each consumer observes an increasingly large sample of purchases, thus even an

infinitesimal price reduction leads to a large increase in first visits because a very

large sample of purchasing decisions serves as a precise statistic for the lowest price.

As a a result, for a sufficiently high search cost, the only candidate for a symmetric

pure strategy equilibrium requires prices to be close to zero, but due to the monopoly

power firms cannot converge on a Bertrand outcome. This is not the case with k = 0

because, in that case, zero prices obtain for c → c̄ where the measure of searchers

vanishes and so firms’ monopoly power is fully erode

We conclude this section with a brief remark over the empirical content of these

results. In our model, prices depend on the size of the social multiplier which is

composed of two different terms. The first term, z′(x), measures the response of the

share of first visits to a marginal increase in current demand. As we have shown,

this effect can be directly linked to the strength of social interactions as captured

by k, and can be approximated by the average degree of a social network. The

second term, M1 −M2, measures the “conversion rate” of first visits into sales. In

a search model, its magnitude is inversely related to the search cost. As a result,

prices are decreasing in the average degree of the network and hump-shaped in

search cost. This yields a novel implication of the effect of the Internet on prices in

horizontally-differentiated markets: the expansion of online social networks should

have resulted in stronger price competition while the use of search engines should

have an ambiguous effect on prices.

5 Correlated Preferences

The empirical literature suggests that consumers follow others because they be-

lieve that, had they had the same information, they would have decided similarly.

That is, their preferences are similar. A positive correlation in valuations across con-

sumers introduces a new channel through which social learning may influence prices.

Whereas in the model with “pure” emulation considered so far, observational learn-

ing leads to a higher price elasticity, with positively correlated valuations, this need

not be true. In particular, consumers will free-ride on each other’s efforts and search

less than in the model where their preferences are independent. If free-riding leads

to less search, firms may increase their market power and, as a result, prices may

be higher.
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We now introduce these considerations into the baseline model. We assume that

all consumers draw their valuations for each firm’s product from one of two poten-

tial distributions, a High distribution (denoted by GH(u)) and a Low distribution

(GL(u)).17 Both distributions are equally likely to realize at each firm, and these

realizations are independent across firms. We assume that both distributions have

the same (finite) support [u, ū]. Let gH and gL be the corresponding continuously

differentiable densities. As standard in the economics literature, we assume that

the Monotone Likelihood Ratio property holds so that gH(x)
gL(x)

is an increasing func-

tion of x. Let λ(u) = gH(u)
gH(u)+gL(u)

be the conditional probability of H given u. Let

G(u) = 1
2
GH(u) + 1

2
GL(u) be the unconditional distribution of valuations of a ran-

dom consumer. As in the baseline model, we shall assume that G(u) is log-concave.

Preferences are correlated across consumers because they are drawn from the same

distribution (GH or GL). Finally let (S1, S2) ∈ {H,L}2 be the realized state. Even

though consumers do not know the utility that their predecessor derived from her

chosen variety, her purchasing decision is informative about which state (S1, S2) has

realized. Clearly, when GH → GL, our baseline model obtains.

5.1 Consumer Behavior

The consumer who arrives in period 1 lacks any information to discriminate between

firms, and, therefore, makes her first visit randomly. She buys outright if and only if

ui−pi > ŵ−p∗, where ŵ is computed as in the baseline model without learning. All

remaining consumers hold a common prior ν(j) over the distribution of their arrival

time. Therefore, all consumers use the same search rule, except the first one.18 They

observe their predecessor buying from firm j ∈ {1, 2} and expect the same price p∗

at both firms before embarking on their first search. Since valuations are positively

correlated, the expected surplus from visiting firm j is larger than that from visiting

firm −j and so the consumer should visit that firm. Upon visit, a consumer learns

her utility realization for good j, uij, and the price set by firm j. The consumer will

search further if and only if uij < w̃(pj), where w̃(pj) solves∫ ū

w̃−pj+p∗
(u− w̃ + pj − p∗)(q(w̃; pj)gH(u) + (1− q(w̃; pj))gL(u))du = c. (19)

17This simple structure ensures that the model remains tractable. Often used “truth-or-noise”
cannot be used because the optimal search rule does not satisfy the reservation property. This is
because when the posterior belief that a consumer holds about the probability that her predecessor
searched is discontinuous in her own realization, search rules become exceedingly complex. If one
looks at the extreme case of perfectly correlated preferences, then the model is the same as ARW
because only the first consumer searches, and all others follow him.

18Monzón and Rapp (2014) show that the classical results in herding models survive even if
consumers are uncertain about their arrival time.
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Here, q(u; p) is the (posterior) probability that the distribution is High at the other

firm. This probability will, in general, depend on the valuation drawn from firm j

(because preferences are correlated) and firm j’s price, because the price affects firm

j’s market share, and thus the probability of an arrival there. In principle, q(u; p)

is a complicated object, since each consumer may infer from u not only how likely

it is that a given distribution is realized but also her cohort, which is potentially

informative about the purchasing decision of the predecessor.

In order to understand q(u; p), we first look at the probability that consumer i

buys from firm 1 if the state is (SS ′) ∈ {H,L}2. Since the probability she starts

her search in that firm is equal to the probability that her predecessor bought there,

xi−1
SS′ , we have that consumer i buys with the probability

xiSS′ = xi−1
SS′M

SS′

1 + (1− xi−1
SS′)M

SS′

2 , (20)

where

MSS′

1 = (1−GS(w̃(p))) +

∫ w̃(p)

u

GS′(u− p+ p∗)gS(u)du

MSS′

2 = GS′(w
∗)(1−GS(w∗ + p− p∗)) +

∫ w∗+p−p∗

u

GS′(u− p+ p∗)gS(u)du,

where w∗ = w̃(p∗). It is straightforward to see that if w̃(p) > u, this mapping has

a fixed point where market shares are stationary. In Appendix 2 we show that,

provided that the number of consumers is sufficiently large, consumers’ optimal

search strategy is arbitrarily close to the one computed for a stationary market share

distribution. In this case, dropping the time subscript, we can write a firm’s market

share in state SS ′ when it charges p while the other firm charges the equilibrium

price p∗ as the solution to (20) where we impose xiSS′ = xi−1
SS′ = xSS′ . This gives

xSS′ =
MSS′

2

1− (MSS′
1 −MSS′

2 )
.

Once we have market shares in every state (which depend on p and p∗, but also

on w(p) that is yet to be determined) we find q(u; p) as

q(u; p) =
xHH(p)λ(u) + xLH(p)(1− λ(u))

(xHH(p) + xHL(p))λ(u) + (xLH(p) + xLL(p))(1− λ(u))
(21)

The above formula uses market shares in every state and weights the conditional

probability of H given u by these market shares using Bayes rule.

This completes the characterization of the consumer search rule. In particular,

w(p) is implicitly defined in (19) where q(u; p) is given by (21) where xSS′ is given
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in (20).

5.2 Equilibrium Conditions

In equilibrium, both firms charge the same price. Therefore, consumers’ search rule

in (19) can be rewritten as∫ ū

w̃

(u− w̃)(q(ŵ)gH(u) + (1− q(ŵ))gL(u))du = c (22)

where q(w̃) = q(w̃; p∗) is the equilibrium probability that the rival firm has a High

distribution given the reservation utility. Notice that q(u) ≤ q(ū) ≤ 1
2

since observ-

ing the predecessor buying at a firm is bad news about the prospects at the rival.

Hence, we have the following observation.

Proposition 5. In a symmetric equilibrium, w̃ < ŵ, and, hence, consumers free-

ride on others’ effort relative to the model without correlations.

Firms’ profits depend on the search rule used by consumers both on and off the

equilibrium path. In particular, let w̃′(p) be the implicit derivative of the reservation

utility with respect to p. In the baseline model without learning, as well as in the

ARW model, w̃′(p) = 1 so that a unit increase in the price is compensated with a unit

increase in required utility. This is no longer the case with correlated preferences

and observational learning. Consumers who visit a firm with a different price adjust

their beliefs about the distribution of valuations in the rival firm, while keeping

their beliefs about its price constant.19 In particular, the higher the price, the less

likely it is that a consumer ends up in that firm if its rival has a High realization of

valuations. Thus, in general, w̃′(p) < 1.

Firm 1’s expected demand when it charges p1 while its competitor charges p∗

and consumers use reservation utility function w̃(p) is the average of demands over

all possible states. Because states between firms are independent, and equally likely,

the demand is given by:

x(p1, p
∗) =

1

4

∑
SS′

xSS′(p1, p
∗).

Here x(p1, p
∗) implicitly depends on w(p) and thus on consumer search rule. In

the symmetric equilibrium, the price satisfies

∑
SS′

xSS′(p
∗, p∗) + p∗

∑
SS′

∂xSS′(p
∗, p∗)

∂p1

= 0.

19The assumption of passive beliefs is common in the literature. For a discussion see Janssen
and Shelegia (2014).
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Once we impose
∑

SS′ xSS′(p
∗, p∗) = 1

2
because of symmetry, the equilibrium pricing

rule simplifies to
1

2
+ p∗

∑
SS′

∂xSS′(p, p
∗)

∂p1

= 0. (23)

In order to solve the model, then, we need to characterize the derivative of

demand with respect to the price in every state. This derivative crucially depends

on the response of consumers to a marginal change in price by one firm. In turn, this

response depends on the poster estimate of state H at the other firm, which in turn

depends on the demand in each state. No closed form solutions exist, but one can

obtain a numerical solution by finding w̃′(p) using the implicit function theorem, and

imposing symmetry everywhere. In what follows we provide the numerical solution

for the Uniform distribution and analytically characterize the limit when the mass

of searchers vanishes for any distribution.

5.3 Equilibrium Characterization

If λ(u) = 0, upon drawing u at firm j, the probability that the rival firm has a High

distribution is arbitrarily small and so xL,H(p∗, p∗) = 0. Thus, q(u) = 0 and we

define

c̄L =

∫ ū

u

ugL(u)du

to be the largest search cost such that there is search in equilibrium. For every

c < c̄L, a firm offering its product for a price p∗ − (c̄L − c) retains all its incoming

consumers and, therefore, obtains a stationary market share equal to one. This puts

an upper bound on the equilibrium price. The following proposition establishes that

this upper bound converges to zero as c→ c̄L.

Proposition 6. As c→ c̄L, p∗ → 0 for every (GH , GL) such that λu = 0.

As the search cost increases, retaining consumers becomes increasingly cheap.

Market shares are fully determined by the relative proportion of searchers who

buy in each store, so that a deviating firm can attract all consumers by offering

an increasingly small discount, leading to Bertrand competition and marginal-cost

pricing.

5.4 Comparative Statics

We discuss now the effects of learning on prices. In order to do so, we shall compare

the equilibrium prices if consumers’ preferences are correlated (GH 6= GL) with the

case where consumer preferences are independent (GH = GL = G). Let, as before,

p̃ be the price with uncorrelated preferences and p̃cor be the equilibrium price if
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preferences are correlated. The following corollary shows that learning may put

even further pressure on prices.

Corollary 2. Take an (unconditional) distribution G with associated distributions

GH and GL. There exists ε > 0, such that for c ∈ (c̄L − ε, c̄L), p̃cor < p̃.

That is, if the purchasing decision of a predecessor is informative about the

distribution of utilities of her successor, the equilibrium price elasticity increases

and, thus, prices decrease. This is because consumers whose valuation for the variety

they sample first is low become increasingly pessimistic about their prospects at the

other firm, the higher is the correlation across consumers, and, therefore, they are

less inclined to search. Since the elasticity of demand decreases in the proportion of

searchers when the latter is sufficiently high, the result follows.

The following figures illustrate our results for G(·) ∼ U [0, 1]. In this example GL

is a triangular distribution on [0, 1] with mode 0 while GH is a triangular distribution

on [0, 1] with mode 1. As required, the mixture of the two is uniform on [0, 1] and

GH FOSD GL. Also, λ(u) = 0.

Figures 1 and 2 show prices and reservation utilities in various models. As

c

ŵ

c̄L
0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

p̂

w̃

p̃

p̃cor

Figure 4: Prices in our model with correlated (p̃cor), uncorrelated (p̃) and the ARW
(p̂, gray) for triangular distributions.

expected, the price is lower in the model with pure emulation (p̃) than in the ARW

model (p̂). The equilibrium price in the ARW model is increasing in c and reaches

1 at c = 1/2. This is where even a consumer who draws 0 at the first firm refuses

to search further. In our model with correlation of preferences, as predicted by

Proposition 6, because λ(0) = 0, the price converges to zero when c→ c̄L = 1/3. In

our model with pure emulation and the same unconditional distribution, the price

converges to zero at c = 1/2, as implied by Proposition 2. Intuition for both results
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is simple. When c = 1/3 in the model with learning, a consumer who is sure that

utilities from the other firm are drawn from GL will not search. But this is what

happens in equilibrium when a consumer draws utility close to 0 - she reasons that

because the distribution at the current firm is almost surely GL, the fact that she

came here indicates that the distribution is also GL at the other firm, or otherwise

she would have almost surely ended up at the other firm for the first visit. Thus even

though u close to u is bad news about the current firm, it is also bad news about the

next firm. Because the search cost at the current firm is sunk, no consumer searches

beyond the first firm.

Figure 5 shows w̃′(p̃cor) as a function of c. For c→ 0, the derivative of reservation

utility approaches 1. This is because when almost all consumers search, the price

contains almost no information and so the reservation utility matches it one for one.

For all c ∈ (0, cL), w̃′(p̃cor) is less than 1, reflecting the informational content of price

deviations.

c
c̄L

Baseline

0.0 0.1 0.2 0.3 0.4 0.5

0.94

0.96

0.98

1.00

w̃0(p̃)

Figure 5: The derivative of reservation utility with respect to p in our model for
triangular distributions.

Finally, Figure 6 illustrates equilibrium demands in various states as a function

of c. In symmetric states (LL and HH), demand for both firms is equal to 0.5

and is independent of the search cost. Matters are more interesting in asymmetric

states. As the search cost increases, demand for a firm with low distribution facing

a firm with high distribution shrinks (the opposite is true for high distribution vs

low distribution). Naturally, when search cost is low some consumers buy at the

firm where utility is drawn from GL, and so the same proportion of consumers visits

this firm first. As c → 1/3, search vanishes and almost all consumers are steered

toward and stay at the firm with the high distribution. Thus, a herd forms whenever
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(almost) all consumers make the first visit to a given firm and buy outright.20

These results can be linked to those obtained in Bar-Isaac et al. (2011) who show

that a reduction in search costs leads to an increase in demand for “superstars”

(accompanied by a simultaneous increase in the demand for niche products.) In

contrast, with observational learning the superstar effect increases in search costs

because individual experimentation becomes increasingly costly.

x

cc̄L0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0
xHL

xLH

xLL = xHH

Figure 6: Equilibrium demand in various states for triangular distributions.

5.5 Welfare

What are the welfare consequences of introducing correlation of preferences into the

model? Consumers observe the purchasing decisions of their predecessors and thus

visit the store offering higher utility realizations with higher probability. Since the

search rule is a cutoff rule, we have that total Surplus can be written as:

W =
∑
S,S′

∫ ŵ

u

(
uGS(u)gS′(u) + uGS′(u)gS(u)

)
du

+
∑
S,S′

[
xSS′

(∫ ū

ŵ

ugS(u)du+GS(ŵ)

∫ ū

ŵ

ugS′(u)du

)
+ (1− xSS′)

(∫ ū

ŵ

ugS′(u)du+GS′(ŵ)

∫ ū

ŵ

ugS(u)du

)])
− c

∑
S,S′

(
xS,S′GS(w̃) + (1− xS,S′)GS′(w̃)

)
The first term represents the expected utility of a consumer whose utility draws

20In the classical definition, a herd occurs when individuals disregard their private information
and follow the crowd. In our simple model, individuals do not possess prior information.
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in both stores are below the cutoff and, therefore, is independent of market shares

because such a consumer searches regardless of where she makes her first visit. The

remaining terms increase in the difference between the market share of a firm offering

a High and a Low distribution (xHL−xLH), and, therefore, it is higher in our model

as compared to ARW. This means that

Proposition 7. Welfare is higher if consumers observe others.

Perhaps the more interesting result concerns the comparative statics of welfare

with respect to search costs. Information about predecessors and search constitute

substitute sources of information. As the search cost vanishes, search is a more

efficient signal and so the prior information becomes irrelevant. On the other hand,

as search cost increases, information about predecessors becomes increasingly im-

portant. This substitution effect is at the core of the following result.

Proposition 8. Increasing the search cost may have a non monotone effect on

welfare. For arbitrarily low search costs, welfare decreases in the search cost. On

the other hand, for high enough search cost there are distributions GH and GL such

that welfare increases in the search cost.

The first part is rather trivial. If the search cost is sufficiently low, almost every

consumer searches and an increase of the search cost induces a first order, direct

and negative effect on welfare. Since consumers do not stick to their first option,

prior information is not valuable and, thus, welfare is reduced. The second part,

however, is less intuitive. When almost every consumer buys at the first store she

visits, an increase of the search cost has a negligible effect on total search expendi-

ture. Marginal consumers are discouraged from searching but those do not matter

for welfare because their utility loss is negligible (their cutoff rule being optimal).

Importantly, however, these marginal consumers fail to internalize the information

externality they originate when searching. Naive intuition would suggest that this

externality is positive, since consumers who search acquire valuable information and

pass it on to their successors. Importantly, however, their successors obtain only

a biased signal since they do not learn their search pattern, only their purchasing

decision. As it turns out, when search costs are very high, a searcher is more likely

to buy in a store with a Low distribution than in a store with a High distribution

and thus passes on bad information to her successor. Since successors deem it un-

likely that their predecessor searched, they follow them to the store with a Low

distribution. Therefore, the net effect of an increase in search cost depends on the

relative magnitude of the direct negative effect and the indirect effect on information

aggregation. In the proof we show that for Triangular distributions it is indeed the

case that social welfare is non-monotone in the search cost.
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6 Conclusion

In this paper, our aim was to introduce observational learning into a standard con-

sumer search model with horizontally differentiated products. We have developed a

simple and tractable extension of the ARW framework, whereby consumers observe

others and visit first the firm where their predecessor has purchased. In the sim-

plest version of this model, this amounts to a behavioral modification of the standard

framework that, nonetheless, has strong implications for the equilibrium prices. We

further developed a rationale for such behavior through correlated preferences and

showed that the qualitative implications of the original model remain unchanged.

In order to highlight the core mechanism through the social multiplier of demand,

we have abstracted from a number of important issues. First, firms are restricted to

serve all incoming consumers at the same price. This assumption, however, can be

justified if price-adjustment is slow when compared to the speed of learning among

consumers. Second, in our model firms choose only prices, so we have abstracted

from such important choice variables as product design or advertising.21 For in-

stance, niche products induce a different learning process than mass products and

this is likely to have implications for prices (see Chen et al. (2011)). Similarly, ad-

vertising spurs consumer awareness for new products and, therefore, may soften the

price-elasticity of the residual demand. On the other hand, many advertising deci-

sions are intrinsically linked to consumers’ interactions. For instance, most products

have a recognizable logo stamped on them so that other consumers may identify it.

Thus, firms may actively affect the speed of learning about new products by adver-

tising and branding. We believe that these features can be incorporated within our

basic framework.

Finally, our model provides a simple framework to evaluate the effect of the

Internet on consumer search markets. On the one hand, online platforms facilitate

the comparison of different products and, thus, reduce search costs. On the other

hand, online social networks foster social interactions. As it turns out, these two

features have opposite effects on the size of the social spillover and, therefore, provide

different implications for equilibrium prices. Therefore, a potential avenue for future

research is to empirically separate the effects of these two sources of information on

prices and demand elasticities in consumer search markets.

21See Bar-Isaac et al. (2011) and Haan and Moraga-Gonzalez (2011) who build on the ARW
model to endogenize product design and study informative advertising, respectively.
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Appendix A: Proofs

Proof of Proposition 1

Using the demand in (7), the FOC for firm 1’s profit maximization after imposing

that in equilibrium M∗
1 +M∗

2 = 1 is

1

2
+ p

(∂M1/∂p1 + ∂M2/∂p1)

2(1− δ(M1 −M2))
= 0.

In the symmetric equilibrium M1 +M2 = 1, Q1 = 1/2, ∂M1/∂p1 = −
∫ ŵ
u
g(u)2 du−

(1−G(ŵ))g(ŵ) and ∂M2/∂p1 = −
∫ ŵ
u
g(u)2 du. So we can solve for p̃ from the above

to obtain

p̃ =
1− δη∗

2
∫ ŵ
u
g(u)2 du+ (1−G(ŵ))g(ŵ)

.

It is well known that in the ARW model the price is

p̂ =
1

2
∫ ŵ
u
g(u)2 du+ (1−G(ŵ))g(ŵ)

,

thus p̃ = (1− δη∗)p̂.
Even though the candidate equilibrium price is clearly unique, it still remains to

be shown that no firm wants to deviate from the candidate equilibrium. We shall

first show that the SOC is satisfied locally for any G(·) that satisfies log-concavity of

1−G(u). Then we show that the profit function is globally concave for the special

case where G(u) is uniform.

We take the SOC for firm 1 and evaluate it at p1 = p̃ = (1− δ(1−G(ŵ)))p̂.

∂2Π1(p1, p̃)

∂p2
1

∣∣∣
p1=p̃

=

[
(1−G(ŵ))(δ + δ(G(ŵ)− 2)G(ŵ)− 1)g(ŵ)

− 4(δ − 2)(G(ŵ)− 1)g(ŵ)

∫ ŵ

ŵ

g(u)2 du− 8

(∫ ŵ

ŵ

g(u)2 du

)
2

+ g(ŵ)2(δ + δ(G(ŵ)− 2)G(ŵ)− 1) + (3(δ − 1)

+ (3δ − 2)(G(ŵ)− 2)G(ŵ))g(ŵ)2

]/[
2(1− δ + δ(2−G(ŵ))G(ŵ))×

×
(

2

∫ ŵ

u

g(u)2 du+ (1−G(ŵ))g(ŵ)

)]
.

The denominator is positive. The derivative of the numerator with respect to δ

is

(1−G(ŵ))

(
4g(ŵ)

(∫ ŵ

u

g(u)2 du

)
+ (1−G(ŵ))g(u)2 + (1−G(ŵ))

(
(1−G(ŵ))g(ŵ) + 3g(ŵ)2

))
,
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which is positive because (1 − G(ŵ))g(ŵ) + 3g(ŵ)2 > 0 by the log-concavity of

1−G(u). Thus the SOC is increasing in δ. We then consider the numerator of SOC

for δ = 1 to obtain

−8

(∫ ŵ

u

g(u)2 du

)
2 − 4(1−G(ŵ))g(ŵ)

∫ ŵ

u

g(u)2 du− (2−G(ŵ))G(ŵ)×

×
[
g(u)2 + g(ŵ)2 + (1−G(ŵ))g′(ŵ)

]
.

This is negative by the log-concavity of 1−G(u) which implies that the expression

in square brackets is positive. This proves that ∂2Π1(p1,p̃)

∂p21

∣∣∣
p1=p̃

< 0, thus p1 = p̃ is the

local maximizer of firm 1’s profits.

Now we show that p̃ is the global maximizer for the special case where G(·) ∼
U(0, 1). In that case p̃ = 1−δ(1−ŵ)2

1+ŵ
.

There are three cases depending on p1. For p1 ∈ [p̃, 1 + p̃ − ŵ), after some

manipulations, the second derivative of profits can be written as

∂2Π1(p1, p̃)

∂p2
1

= − (ŵ + 1)3(δ(ŵ − 1) + ŵ + 1) (δ(ŵ − 1)2 − 1)
2

(δ(1− ŵ) (pŵ + p+ ŵ2 − 2) + δ2(1− ŵ)3 + ŵ + 1)3 .

The denominator is clearly positive since 1 + ŵ − δ(1 − ŵ) > 0. The numerator is

increasing in p1, thus it reaches its minimum at p1 = p̃ = 1−δ(1−ŵ)2

1+ŵ
. Plugging this

value into the numerator, and simplifying yields (1 + ŵ)3 (1− δ(1− ŵ)2)
3
, which

is positive, therefore the numerator is positive for all p1 in the interval. Thus, the

second derivative of firm 1’s profit is negative for all p1 in this interval.

Now consider p1 ≥ 1 + p̃− ŵ, which means that p1 is so high that all consumers

who visit firm 1 first go on to search firm 2. In this case,

∂2Π1(p1, p̃)

∂p2
1

= −2.

Now consider p̃ − ŵ < p1 < p̃. It can be shown that in this case the second

derivative of profits has the opposite sign of

f = δ2p3
1(ŵ − 1)2(ŵ + 1)3 + 3δp2

1(ŵ − 1)(ŵ + 1)2(δ(ŵ − 1) + ŵ + 1)
(
δ(ŵ − 1)2 − 1

)
+3p1(ŵ + 1)(δ(ŵ − 1) + ŵ + 1)2

(
δ(ŵ − 1)2 − 1

)2
+
(
δ(ŵ − 1)2 − 1

)2

×
(
4δ + δ2

(
3ŵ2 − 4

)
(ŵ − 1)2 + ŵ2(ŵ + 2)2 + δ3(ŵ − 1)4 + δŵ(ŵ(ŵ(3ŵ + 2)− 7)− 2)− 1

)
,

which is increasing in p1, thus its minimum is reached at the lower bound of p1.

There are two cases depending on δ. For δ < 1−ŵ(1+ŵ)
(1−ŵ)2

(in which case the p̃− ŵ > 0)
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so that the lower bound on p1 is p̃− ŵ. Plugging it in simplifies f as

f = δ2(ŵ − 2)
(
ŵ2 − 1

)2
(ŵ(2ŵ + 3)− 3)− (ŵ + 1)2

(
2ŵ2 + ŵ − 2

)
+ 2δ3(ŵ + 1)2(ŵ − 1)5

+ δ(ŵ + 1)2((ŵ − 6)ŵ(ŵ + 1) + 6)(ŵ − 1).

The above is minimized at ŵ = 0 and δ = 1 where it is equal to 0, thus it is negative

for all other cases.

The second case is where δ ≥ 1−ŵ(1+ŵ)
(1−ŵ)2

, so that the lower bound on p1 is 0.

Plugging 0 into the expression for f gives

f =
(
4δ + δ2

(
3ŵ2 − 4

)
(ŵ − 1)2 + ŵ2(ŵ + 2)2 + δ3(ŵ − 1)4 + δŵ(ŵ(ŵ(3ŵ + 2)− 7)− 2)− 1

)
×

(
1− δ(1− ŵ)2

)2
.

The term on the second line is positive. The term on the first line is minimized at

ŵ = 0 and δ = 0, where it equals zero, thus otherwise it is positive. This proves

that f is positive in both cases, thus the second derivative of profits is negative for

p̃− ŵ < p1 < p̃

Finally, consider p1 < p̃ − ŵ, in which case p1 is so low that all consumer who

arrives to firm 1 buy from it. In this case

∂2Π1(p1, p̃)

∂p2
1

= 0,

but the profit function is linear and increasing in p1, thus the maximizer can never

be in this interval.

This establishes that for the uniform distribution of valuations, firm 1’s profit is

concave in p1 and so p̃ is its global maximizer. Thus pi = p̃ for i = 1, 2 constitutes

the unique symmetric pure strategy equilibrium.

We finally prove that for any distribution, prices converge to zero as δ → 1 and

c→ c̄ in any symmetric equilibrium. Let p be the lowest price in the support. A firm

charging p obtains an expected market share x(p). First, if the lowest upper bound

of x(p) is 1, then, it must be that x(p) → 1 for c → c̄, since firms retain market

power for smaller search costs. If indeed x(p)→ 1 as c→ c̄, randomization implies

that either p → 0 proving the result or the price distribution becomes degenerate.

But the preceding argument shows that if a pure-strategy equilibrium exists it must

have zero prices. Thus, p→ 0 also in that case. Finally, assume that x(p) ≤ x̄ < 1

and consider a deviation to a price p − (c̄ − c). Clearly w(p) = u and, therefore,

x(p) = 1. Hence, if x(p)p < p − (c̄ − c), this deviation is profitable. Hence, in any

equilibrium p(1− x̄) ≤ c̄−c. Since x̄ is independent of c, it must be that p converges

to zero, and randomization implies that the expected price also converges to zero.
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Proof of Proposition 2

The last part follows directly from η∗ = (1 − G(ŵ))∗ which is positive and less

than 1 for all c > 0. To see that the price increases in the search cost for low enough

c, notice that the derivative of p̃ with respect to ŵ (which is decreasing in c) at

ŵ = ū is
∂p

∂ω̂

∣∣∣
ω̂=ū

= −
(

g(ū)

2
∫ ū
u
g(u)du)

)2

which is negative for any distribution and any δ. On the other hand, at the lower

bound, the derivative is

∂p

∂ω̂

∣∣∣
ω̂=u

= 3δ − 1− (1− δ)g(u)

g(u)2
,

which is equal to 2 at δ = 1. It follows directly that there exists δ̄ < 1 such that for

all δ > δ̄ the derivative is positive, thus the price is decreasing in c.

Proof of Proposition 3

In order to show that the price is lower with emulation we need that nG(ŵ)−G(ŵ)n

(n−1)
<

1. To see this notice that nG(ŵ)−G(ŵ)n

n−1
< 1 is equivalent to

n >
1−Gn(ŵ)

1−G(ŵ)
.

This always holds for c > 0 because 1−Gn(ŵ)
1−G(ŵ)

=
∑n−1

j=0 G
j(ŵ) <

∑n−1
j=0 1 = n.

To prove that the ratio p̃n/p̂n is decreasing in n note that p̃n/p̂n = nG(ŵ)−G(ŵ)n

n−1
,

which is decreasing in n if for any n ≥ 2 we have

nG(ŵ)−G(ŵ)n

n− 1
<

(n− 1)G(ŵ)−G(ŵ)n−1

n− 2
,

which can be rewritten as

G(ŵ)n−2(n− 1− (n− 2)G(ŵ)) < 1.

The LHS of the above is strictly increasing in G(ŵ) for G(ŵ) < 1, thus the LHS

reaches its maximum at G(ŵ) = 1, where it is equal to 1. It follows that nG(ŵ)−G(ŵ)n

n−1

is decreasing in n for c > 0(G(ŵ) < 1).

To prove that p̃n is decreasing in n we note that Anderson and Renault (1999)

show that p̂n is decreasing in n, which given that p̃n/p̂n is also decreasing immediately

implies that p̃n is also decreasing in n.

Finally, we show that the limit of p̃n when c → c̄ is 0. This follows from

limc→c̄ η
∗
n = 1 − n−1n

n−1
= 0. A simple modification of the argument presented in

the Proof of Proposition 2 shows that this must hold in any equilibrium.
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Proof of Proposition 4

The implicit derivative of x with respect to p1 can be found from (17) as

∂x

∂p1

=
z(x)(∂M1/∂p1 − ∂M2/∂p1) + ∂M2/∂p1

1− z′(x)(M1 −M2)
.

If we now impose symmetry, then x = 1/2 and z(1/2) = 1/2 so that the necessary

condition for the symmetric pure strategy equilibrium price becomes

p̃ =
1− (M∗

1 −M∗
2 )z′(1/2)

∂M1/∂p1 + ∂M2/∂p1

=
(1−G(ŵ)2ζ(k))

2
∫ ŵ
u
g(u)2du+ (1−G(ŵ))g(ŵ)

= (1− η∗k)p̂,

where in the last transformation we used the well-known expression for the ARW

price

p̂ =
1

2
∫ ŵ
u
g(u)2du+ (1−G(ŵ))g(ŵ)

.

As shown in the text, ζ(k) is increasing in k, therefore, if the equilibrium exists, p̃

is decreasing in k.

As for the non-existence of the pure strategy equilibrium, note that for c = c̄k,

p̃ = 0 because, by definition, 1 − η∗k = 1. At the same time, G(ŵ) > 0, thus a

positive fraction of consumers searches, thus firm 1 can earn strictly positive profit

by a deviation to p1 > 0 = p∗. In fact, there exists c′ < c̄k, such that no pure

strategy equilibrium exists for any c > c′.

Finally, notice that the same argument used in the Proof of Proposition 2 ex-

tends for any z′(1/2) ≤ 1 and, therefore, the mixed strategy equilibrium becomes

degenerate at c→ c̄.

Appendix B: Correlated Preferences

The following lemma shows that the stationary equilibrium we study can be reached

as the limit of the dynamic economy of the model for T large enough provided that

G(ŵ(p∗)) > 0.

Lemma 1. Suppose there is a unique cutoff w̃(p1) > u solving equation (19) and

let w(p1) be the optimal cutoff rule. Then, for every ε > 0, there exists a T ∗ < ∞
such that for all (non-negative) prices ‖w̃(p1)− w(p1)‖ < ε.

Proof of Lemma 1

We first establish that market shares converge for any pair of non-negative prices.

To see this, notice first that M1(p1, p
∗) and M2(p1, p

∗) are independent of t. The
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evolution of market shares can be readily computed as

|xt − xt−1| = |xt−1 − xt−2|(M1(p1, p
∗)−M2(p1, p

∗)) (24)

Notice that that M1 −M2 ≤ maxS(1 − GS(w̃(p∗)).22 If p∗ is such that w̃(p1) = ū,

then market shares are independent of time because all consumers go through firm

2. If w̃(p1) = u, firm 1 is an absorbing state of the process independently of p2 and

the state S ′. Hence, assume that p1 is such that GS(w̃(p1)) ∈ (0, 1)

|xt − xt−1| ≤ [max
S

(1−GS(w̃(p∗)))]t|x1 − x0| (25)

or

|xt − xt−1| ≤ [max
S

(1−GS(w̃(p∗)))]t|xW − 1

2
| (26)

where xW is the share of firm 1 in ARW (i.e. the first consumer). Clearly, this

Fixed Point converges to the stationary market shares by Blackwell’s Theorem and

the parameter of convergence is {maxS(1 − GS(ŵ(p∗))} which is strictly less than

one. For every ε > 0 and for every p ≥ 0, there exists T1 < ∞ such that T1 =
ln(φ∗ε)

ln((1−GL(w̃(0))))
and

|xt − xt−1| ≤ φε

for every t > T1 and some φ > 0. Now we can compute the optimal cutoff rule

for a consumer who knew his own arrival time. Indeed, since λ(u) and xS,S′(p1) are

continuous functions, the conditional probabilities of the different states given some

(u, p1) realization can be written as

qT1(u; p1) =
xT1HH(p1)λ(u) + xT1LH(p1)(1− λ(u))

(xT1HH(p1) + xT1HL(p1))λ(u) + (xT1LH(p) + xT1LL(p1))(1− λ(u))
. (27)

which differs from q∗ as computed from Equation (21) because it depends on t. The

remainder of the proof establishes that this difference is arbitrarily small. Notice

that xT1S,S′ ∈ [xS,S′ − φε, xS,S′ + φε], we can write

sup ‖ qT1 , q∗ ‖≤
φε

λ(xHH + xHL) + (1− λ)(xLH + xLL)
<

φε

GL(ŵ(0))(1−GL(ŵ(p1))
(28)

Let T ∗ = RT1, for R large enough we have that

sup ‖
T ∗∑
t=1

1

T ∗
qt(u, p1),

T ∗∑
t=1

1

T ∗
q∗t (u, p) ‖<

(R− 1) φε
GL(ŵ(0))(1−GL(ŵ(p1))

+ 1

R

<
2φε

GL(ŵ(0))(1−GL(ŵ(p1))

22Here M1 is at most 1, and M2 is at least GS(w̃(p∗)).
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and now let φ = supp:ū>ŵ(p!)>u
1
2
GL(ŵ(0))(1−GL(ŵ(p1)))g(u), so that the difference

between the stationary probability measure and the actual probability measure that

almost everyone observes is smaller than εg(u). Using Equation (19), it is easy to

verify that G(ŵ(p)) is a continuous contraction in the probability measure q. Since

G is strictly increasing, G−1 is uniformly continuous with parameter 1
g(u)
≥ 0, and

this implies that ‖w̃(p1)− w(p1)‖ < ε as required.

Proof of Proposition 5

In equilibrium xHH = xLL = 1/2 and xHL > 1/2 > xLH , thus λ(u) < 1/2 for all

u. From (19) it follows that its LHS is higher than the LHS of (1) for the same w.

This immediately implies that w̃ < ŵ.

Proof of Proposition 6

Fix c and let p∗ be the conjectured price of the rival firm. We prove that for any

price p∗ > p̄(c) there is a profitable deviation to p∗ − (c̄L − c) that captures the full

demand.23 Indeed, notice that∫ ū

u

(u− u− (c̄L − c))dGL(u) = c

by definition of cL. Since λ(u) = 0 a firm charging p∗ − (c̄L − c) retains all its

incoming consumers. Because of the social multiplier of demand, this implies that

its long-run market share is 1. This yields a profit of p∗− (c̄L− c). Therefore, every

price p∗ such that
1

2
p∗ ≤ p∗ − (c̄L − c)

is inconsistent with an equilibrium. Thus, p∗ ≤ p(c) = 2(c̄L− c). Clearly, as c→ c̄L,

p(c)→ 0 and the result follows.

Proof of Proposition 8

By the Envelope Theorem, since w̃ is chosen optimally given c, a marginal change

in c affects W only through the direct effect of savings in search expenditures and the

indirect effect of information aggregation via xSS′ . When c → 0, there is no value

of information since search is free, and, thus, the only value comes from savings.

On the other hand, if c → c̄, there is a (small) direct effect on savings since the

measure of searchers is 1
4

∑
xSS′GS(u). Information is useful since search is costly

so that the only question is whether more or less information is aggregated. Since

xHH = xLL = 1
2
, the only question is the sign of ∂xHL

∂w̃
.

∂xHL
∂w̃

=
GL(w̃)gH(w̃)−GH(w̃)gL(w̃)

(GH(w̃) +GL(w̃))2
> 0 (29)

23The argument can be extended to mixed strategies by choosing p∗ to be the lower bound of
the support of the price distribution.
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where the first equality comes from the definition of market shares at w̃ → u and

the last inequality comes from the MLRP, but w̃ is decreasing in c. In particular,

∂w̃

∂c
= − 1

1− 1
4

∑
xSS′GS′(w̃)

< − 1

1−GH(w̃)

Thus, welfare increases in search costs if

GL(w̃)gH(w̃)−GH(w̃)gL(w̃)

(GH(w̃) +GL(w̃))2

1

1−GH(w̃)
(VH(w̃)− VL(w̃))

1

2

≥ 1

4

∑ GS(w̃)GS′(w̃)

GS(w̃) +GS′(w̃)

which yields

(GL(w̃)gH(w̃)−GH(w̃)gL(w̃))(VH(w̃)− VL(w̃)) ≥

2(GH(w̃) +GL(w̃))2)(1−GH(w̃))
∑ Gj(w̃)Gi(w̃)

Gi(w̃) +Gj(w̃)
.

For the case of the triangular distribution this becomes

(w̃)2 1

3
> (w̃)2(1− (w̃)2){w̃ + (w̃)(2w̃ − (w̃)2)} = (w̃)3(1− (w̃)2)(1 + 2w̃ − (w̃)2)

which holds for w̃ small enough.

Appendix C : Finite Outside Option

We have followed Anderson and Renault (1999) and assumed that consumers have

to buy from one of the firms because their outside option is arbitrarily bad. This

assumption greatly simplifies the analysis but it is not without loss. The main

consideration is that when there is a sufficiently good outside option, for high enough

search costs consumer do not search, and firms charge monopoly prices. This means

that there is a limit to how low prices can be when search costs are high, because

eventually consumers stop searching and prices jump up.

In this Appendix we extend the model to incorporate a zero outside option using

the baseline model presented in Section 4. This is the Wolinsky’s version of the

ARW model. In order to deal with the issue that some consumers do not buy, we

assume that every consumer observes the close predecessors who purchased one of

the two goods. As before we focus on the case where δ → 1. Firm 1’s share of first

visits is now z(x) = x/X, where x is the demand of firm 1 and X is total market
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demand. We have

x(p1, p
∗) =

x(p1, p
∗)

X
(1−G(ŵ + p1 − p∗)) +

(
1− x(p1, p

∗)

X

)
G(ŵ)(1−G(ŵ + p1 − p∗))

+

∫ ŵ+p1−p∗

p1

G(u− p1 + p∗)g(u)du,

where p1 is the price charged by firm 1 and p∗ the equilibrium price. This expression

is similar to (5) except for the usage of stationary market shares x/X and the fact

that only consumers with valuations above p1 purchase the product (notice that the

integral runs from p1 instead of u).

Total demand can be readily computed since those consumers who do not pur-

chase in any of the two firms is G(p1)G(p∗), which gives the total demand X =

1−G(p1)G(p∗). One can now solve for x(p1, p
∗), maximize firm 1’s profit given firm

1’s demand, and impose that in equilibrium p1 = p∗.

Before we fully characterize the above equilibrium, we should note that with a

zero outside option consumers may stop searching, which is the case when p∗ > ŵ.

Thus when search cost is sufficiently large, consumers do not search and firms charge

monopoly prices.

Proposition 9. Under suitable conditions on G(w), there exist two thresholds, c1

and c2 with c̄1 < c̄2, such that

(i) with observational learning equilibrium price is p̃ for c ≤ c̄1 and pm otherwise;

(ii) without observational learning equilibrium price is p̂ for c ≤ c̄2 and pm otherwise.

(iii) for c ≤ c̄2 the price in the model with emulation is lower than in the model

without it.

Proof. Solving for x from (30), taking derivative with respect to p1 and imposing

p1 = p∗ gives the following pricing rule

p̃ =
(1−G(p̃)2)((2−G(ŵ))G(ŵ)−G(p̃)2)

2(1−G(p̃)2)
∫ ŵ
p g(v)2 dv+G(p̃)(1−2G(p̃)2+(2−G(ŵ))G(ŵ))g(p̃)+(1−G(p̃)2)(1−G(ŵ))g(ŵ)

. (30)

The above only holds for p ≤ ŵ, which gives the threshold on c, denoted by c̄2 From

(30), c̄2 is such that the corresponding w solves

w =
2G(w) (1−G(w)2)

(2G(w)2 +G(w) + 1) g(w)
. (31)

Now consider the Wolinsky pricing rule derived under the assumption that half

of consumers make first visits to firm 1.

p̂ = 1−G(p̂)2

2(
∫ ŵ
p̂ g(v)2 dv+G(p̂)g(p̂)+ 1

2
(1−G(ŵ))g(ŵ))

. (32)
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As before, the above only holds for c below a threshold, denoted by c̄1. c̄1 is such

that p = w, and corresponds to w that solves

w =
1−G(w)

g(w)
.

It is easy to show that
2G(w)(1−G(w)2)

(2G(w)2+G(w)+1)g(w)
< 1−G(w)2

2g(w)G(w)
in the relevant range of ŵ,

therefore c̄1 < c̄2.

We still have to show the uniqueness and the existence of c̄1 and c̄2. For c̄1 see

Janssen and Shelegia (2014) for the proof. For our model, note that c̄2 is defined as

c such that p̃ = ŵ. Given that G(ū) = 1, which makes the RHS of (31) equal to 0,

such a solution always exits, but might not be unique. Thus we require that G(w)

is such that (31) has a unique solution.24 If it is indeed unique, it is trivial to show

that pM > w, so that indeed once c > c̄1, firms charge pM > ŵ and no consumer

searches.25

In both cases, for c > c̄i, firms charge pM and consumers stop at the first firm.

This implies that in the model with emulation all consumers follow the first con-

sumer, who is allocated at random. Thus for c above the corresponding threshold,

both models are identical.

Finally, to show (iii) notice for c ∈ [c̄1, c̄2) the price with emulation is p̃ and is

strictly below pM , the price in the ARW model. Now we need to show that p̃ < p̂

for c < c̄1. To do so, we show that the ratio of the LHS of (30) to the LHS of (32)

for the same p is less than 1. After some rearrangement one can write this condition

to be the same as

2

∫ ŵ

p

g(v)2 dv +G(p)g(p) + (1−G(ŵ))g(ŵ) > 0,

which holds for any p < ŵ. Thus for any c ≤ c̄1, the solution to (30) is higher than

the solution to (32), therefore p̃ < p̂.

In Figure 7 below we depict equilibrium prices for G(·) ∼ U [0, 1]. The gray curve

depicts standard Wolinsky price as a function of c. For relatively low c, the price is

below the reservation utility and increasing in c. Once c reaches the threshold c̄1, the

price is at the monopoly level, and stays there for all higher c. As shown above, the

price with emulation is lower (the black curve). It is also non-monotone, and never

reaches zero because once c > c̄2, search stops and the price jumps to the monopoly

24It is unique for the uniform distribution.
25In principle, it is possible that at the threshold, ŵ > pM , in which case no pure strategy

equilibrium exists for c immediately above c̄2 because conditional on consumers not searching,
firms charge pM and induce search, but conditional on consumers searching, they charge p > ŵ,
precluding search.
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level (1/2 for the uniform distribution). Note that in both models, when c exceeds

the respective threshold, a version of the Diamond Paradox occurs - consumers do

not search, and firms charge the monopoly price. Because, c̄2 > c̄1, with emulation

the Diamond Paradox appears for higher search cost than in the Wolinsky model.

Thus emulation allows consumers to collectively escape the paradox by putting

sufficient downward pressure on prices. Moreover, once the search cost exceeds c̄2,

prices jump up discontinuously, leading to a stark contrast between markets with

small and large search costs. Markets with c ≤ c̄2 are characterized by low prices,

whereas markets with c > c̄2 are characterized by monopoly prices, In contrast, in

the baseline model the transition is smooth.

0.00 0.05 0.10 0.15 0.20 0.25

0.40

0.45

0.50

0.55
ŵ

p̂

p̃

c̄1 c̄2

pM

Figure 7: Equilibrium prices in the model with zero outside option for G ∼ U [0, 1].

To conclude, note that prices are never close to marginal cost because consumers

stop searching when search cost is high, the reason for zero price in the model

without outside option. As a result, whether the price is decreasing in search cost

depends on the shape of the distribution G. This occurs, for instance, if the price

with c = 0 is higher than the price when c = c̄2. It is easily verified that for the

uniform case this holds.

References

Ali, S. N. (2014). Social learning with endogenous information. Technical report,

Mimeo.

Anderson, S. P. and R. Renault (1999, Winter). Pricing, product diversity, and

search costs: A bertrand-chamberlin-diamond model. RAND Journal of Eco-

nomics 30 (4), 719–735.

41



Armstrong, M., J. Vickers, and J. Zhou (2009). Prominence and consumer search.

The RAND Journal of Economics 40 (2), 209–233.

Armstrong, M. and J. Zhou (2011). Paying for prominence. The Economic Jour-

nal 121 (556), F368–F395.

Banerjee, A. V. (1992, August). A simple model of herd behavior. Quarterly Journal

of Economics 107 (3), 797–817.
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