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Risk and Sustainability:
Assessing Fisheries Management Strategies

Abstract

We develop a theoretical framework to assess fisheries manage-

ment strategies from a sustainability perspective, when the bioeco-

nomic dynamics are marked by uncertainty. Using stochastic viabil-

ity, management strategies are ranked according to their probability

to satisfy economic and ecological constraints over time. The pro-

posed framework is useful when it is not possible to define a multi-

attribute utility function to represent the trade-offs between the sev-

eral sustainability objectives. This framework is applied to a Chilean

fishery case-study, faced with El Niño uncertainty. We study the via-

bility of effort and quota strategies, when a minimal catch level and a

minimal biomass are required. For realistic sustainability objectives,

effort-based management results in a better viability probability than

quota-based management.

Keywords: sustainability, risk, fishery economics and management, vi-

ability, stochastic.
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1 Introduction

The analysis in this paper has its origin in some actual concerns regarding

the management practices in Chilean fisheries. The Jack-Mackerel Chilean

fishery is faced with El Niño uncertain cycles, which increase the uncertainty

about this resource availability [3], making management more difficult [14].1

In addition to the usual objective of maximizing catches, management aims

at avoiding biological (collapse) risk. Sustainable resource management under

risk2 requires defining a framework to account for economic and ecological

issues.

Optimality in fishery economics is usually defined as the maximization of

the total discounted profit of harvesting, or its expected value in a stochastic

framework [12, 45, 47]. This approach has the great advantage of defining

optimal strategies with respect to a unique criterion, and makes it possible

to rank management strategies according to their value of discounted ex-

pected profit. Discounted expected utility is, however, difficult to apply to

sustainable resource management issues, when several sustainability dimen-

sions have to be accounted for. Extending the approach to ecological (or

social) issues would require to define a multi-attribute utility function, or to

add ecological constraints to the optimization problem (a difficult issue in a

stochastic context), jeopardizing the applicability of the approach. Indeed, in

practice, management strategies (often defined as simple “rules of thumb”)

are evaluated in so-called “multicriteria” frameworks [20, 24, 34, 49]. Such

methods are based on simulations, and do not necessarily offer the same ad-

1In some extreme cases, recruitment uncertainty and applied management decisions

have led to the collapse of important pelagic stocks, as the Peruvian Anchovy in 1972-

1973.
2In the paper, the terms “risk” and “uncertainty” are used equivalently, with the

underlying economic meaning of risk, i.e., stochastic events with known probabilities.

The economic issue of uncertainty, i.e., unknown or no probabilities, is not addressed.
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vantages as discounted expected utility. In particular, they do not make it

possible to rank explicitly alternative management strategies (e.g., effort or

quota-based strategies) as they provide no common metrics for conflicting

objectives and risk.

This paper tackles the challenge of providing a framework to rank alter-

native management strategies, accounting for conflicting sustainability issues

and risk, when it is not possible to define a multi-attribute utility func-

tion. For this purpose, we refer to the so-called viability [2] and especially

stochastic viability approach [16]. Given a set of multidimensional “outcome

indicators” (either referring to physical or economic variables) and its corre-

sponding set of thresholds representing sustainability bounds (e.g., minimal

biomass, minimal profit), we evaluate management strategies by their proba-

bility of achieving these objectives jointly and at all times over the planning

horizon. The main contribution of the paper is to build a bridge between

the economic literature on optimal resource management under risk and the

“practical oriented” literature on sustainable fisheries management. By pro-

viding a “common currency” to the several sustainability issues, we obtain an

optimality framework ranking alternative management strategies according

to their viability probability. This allows us to define concepts of optimal-

ity and value, and to produce marginal analysis to examine the trade-offs

between sustainability issues and risk. This stochastic viability approach is

thus closer to economics than the usual multicriteria Management Strategy

Evaluation approaches.

We illustrate the implications of our approach in the case of the pelagic

Jack-Mackerel Chilean fishery under El Niño uncertainty. In particular, we

compare effort and quota-based strategies, relating our results to the “price

versus quantity” debate in fisheries management [15, 28, 33, 43, 52].

Section 2 presents the literature in fisheries economics on the one hand,
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and that of fisheries management on the other hand, and motivates our

approach. Section 3 presents our theoretical framework to assess risk and

sustainability, and to compare management strategies when sustainability

objectives are conflicting. We apply this framework to the Jack-Mackerel

Chilean fishery case-study in Section 4, and illustrate our results comparing

effort control and quota driven strategies. We conclude with some remarks

on the relevance of our results for practical fisheries management in Section 5.

2 Background and settings

Optimality in fishery economics is usually defined as the maximization of the

discounted profit of harvest, or its expected value under risk. In the determin-

istic case, constant harvest and escapement emerges as a possible stationary

solution path [11]. Fisheries management issues are, however, highly marked

by uncertainty [31], e.g., on stock evaluation, on the recruitment process, as

well as on catches [40]. Ignoring uncertainties can lead to excessive harvest

and fishery collapse. In the stochastic case, the issue is no longer to define

an optimal path but optimal strategies, that is, decision rules depending on

the information available on-line. The optimal harvest levels may then corre-

spond to very specific management strategies,3 depending on the stochastic

stock level and/or on the uncertain shocks affecting the dynamics [37]. When

responding to the uncertain stock fluctuations, optimality may require strong

variations of the Total Allowable Catches from year to year, and even fishery

closure when the stock size is too low [38]. As fishing industries favor sta-

3For example, a constant-escapement policy may be optimal when the stock is observed

before decision-making and profit is “linear” in the harvest [45]. Linear feedback policies

may be optimal for some models [39]. More sophisticated strategies are needed when

decision has to be made before knowing stock size, for example adjusting the quota level

during the fishing season while the information on the stock size is (costly) available [12].

The presence of multiple uncertainties also makes the optimal policy more complex [47].
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bility of catches [10], optimal management strategies may be hard to apply.4

In fact, even if economic theory provides a description of optimal strategies

that could be used to manage fisheries, they are often managed in practice

with much simpler tools.5 Constant effort and constant quotas are two basic

management strategies. The former approach, also known as fixed fishing

mortality, is based on advice by biologists and results in fluctuating harvest

as the stock fluctuates. From an economic point of view, it is linked to a

constant use of the capital. The latter approach provides stabilized catch,

which is a strategy gaining ground in the industry. The optimal strategy

may be neither of these two [28], but these rules of thumb are still discussed

as potential management strategies in some fisheries.6

In the sustainability context, management objectives are often not lim-

ited to profit maximization. For example, resource conservation may be an

objective in and of itself, along with obtaining long-term socio-economic ben-

efits from fishing, in an Ecosystem-Based Fishery Management perspective

[13, 41, 42]. This increases the number of objectives and stakeholders [23].

Extending the economic optimization approach to several dimensions, for

example to account for ecological objectives, raises delicate questions, and

different answers are possible. Firstly, the additional ecological objectives

could be aggregated with the usual economic objective in a multi-attribute

4Such a willingness to smooth the harvest over time may be related to costly capital

adjustment [48] or to risk-aversion [1].
5For example, [48] described the Alaskan pacific halibut stock as being managed by

setting the yearly harvest as a fixed fraction of the exploitation biomass; this constant

harvest rate rule is shown to smooth the catches over time more than the optimal policy

would do it.
6De facto, Chilean fisheries were managed under a constant effort rule in the 1980s

and 1990s (with a frozen maximum effort which was then reached). Since then, a quota

system has been in use, with a posteriori small changes in the quota levels from year to

year, with few exceptions, as the case of the 2011 TAC fall in the Chilean Jack-Mackerel

fishery.
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utility function. All the elements of the system that have a value are gath-

ered in the utility function. This latter characterizes the preferences of the

“decision-maker.” Stake-holders, however, may not want to, or may be un-

able to agree on a utility function giving all the trade-offs between sustain-

ability issues. Secondly, one can add ecological constraints to the economic

optimization problem. In this case, the preferences are characterized by both

the economic utility function and the thresholds of the ecological constraints.

This approach is very interesting in the deterministic case, as it provides in-

formation on the (marginal) cost of achieving the constraint, or the gain

from relaxing it. In the stochastic case, one can “translate” the determinis-

tic economic criterion into its expected value. It is, however, more difficult to

“translate” a constraint in stochastic terms.7 Moreover, this approach clearly

puts the priority on the economic objective, the other objectives being side

constraints. Some stake-holders may reject this practice.

When one of the ecological, economic or social objective is not met, fish-

eries are faced with a crisis or a unsustainable situation. Indeed, one of the

reasons of management failure in fisheries is the conflict between ecological

constraints and social and economic priorities, the latter often having prior-

ity over resource conservation [30]. An important issue is thus to determine

management procedures (MP)8 that give acceptable results with respect to

7A strict translation, i.e., requiring that the constraint is satisfied with probability

one, yields the robust approach, which usually restricts the decisions so much that the

optimization problem loses its interest. Accepting a risk of constraint violation is another

possibility. This last approach is related to the Management Strategy Evaluation described

below. It requires to consider the performance of the system with respect to the constraint,

and provides, additionally to the expected economic performance, a measure of the risk to

the resource. We shall see that this approach does no allow to rank management strategies

as the performance with respect to the two objectives are not in the same unit, and cannot

be aggregated.
8A management procedure is defined in [9] as a set of rules, which translate data from a

fishery into a regulatory mechanism (such as total allowable catches or maximum fishing ef-
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the sustainability objectives while being robust to uncertainties [10]. Ide-

ally, before defining the MP to be applied, one should compare different

potential MPs and rank them with respect to their ability to keep the fish-

ery sustainable in a uncertain environment. Scientific tools are required to

support multi-criteria decision making, and evaluate proposed management

strategies. A practical challenge is to account for risk, and balance the risk

of resource collapse due to excessive exploitation versus the risk of forgone

economic benefits if the harvests are lower than necessary.

Various scientific tools have been developed to support sustainable fish-

eries management [49], including Management Strategy Evaluation (MSE)

[34] and Ecological Risk Assessment (ERA). While the optimality approaches

are based on stochastic optimization, and thus defining an optimal man-

agement rule, the evaluation of management strategies is mainly done by

comparing pre-defined strategies using simulation methods (usually through

Monte Carlo simulation), which is easier than stochastic optimization for

large models.

Management Strategy Evaluation aims at evaluating the performance of

management strategies against various objectives [9, 10, 20, 24, 34, 46]. Typ-

ically, sustainability objectives consist in maximizing catches while at the

same time maximizing industrial stability and limiting biological risks [24].

Risk is usually defined as the probability to fall under a given stock thresh-

old. When comparing alternative Management Procedures, preference goes

to smaller risk to the resource, lower variation in TAC over time, and higher

average catches [20]. However, these general objectives are usually in con-

flict, inducing necessary trade-offs. The performance of various management

procedures may then be represented in a map of “mean catch – risk to the

fort). According to [20], such MPs have been developed (though not always implemented)

for a number of fisheries since their development within the International Whaling Com-

mission in the late 1980s.
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resource” [49], providing a description of the basic trade-offs to the decision-

maker.

For example, following the lead of [8] and [9], Yepes et al. [53] per-

formed a Management Strategy Evaluation of the Chilean Jack-Mackerel

fishery. Several strategies, based on effort or quota control, were evaluated

and represented as points defined by two outcomes – risk to the resource and

expected mean annual catches – in a graphic with two axis as in Fig. 1. Risk

to the resource was defined as the probability of falling below 20% of the

virginal spawning stock biomass over the planning horizon. Average annual

catch level was a proxy variable for the economic objective.9

“Ideal” management strategies would lie on the South-East part of the

map, displaying low risk to the resource and high mean catches. It is, how-

ever, not possible to rank the various management procedures from such a

graphical representation as there is no “common currency” to aggregate the

two objectives (in economic terms, we can say that there is no value func-

tion). One objective is a mean value (an aggregation of value over time and

over uncertainty scenarios) while the other is a probability to overshoot a

given ecological threshold. The decision-maker should thus have preferences

over value and risk, while the usual approach is to define preferences on value

and to aggregate risk by computing the expectation of value.10 Value and

9Usually, a regulator observes prices, but fishing costs are private information, de-

pending on vessels’ specific factors. Profit functions cannot be estimated, unless strong

hypotheses are made on fleet homogeneity. Therefore, in practice, the usual approach is

to use catches as a proxy for revenue and effort as a proxy for costs.
10Though in economic theory we know some types of Utility functions, such as Con-

stant Absolute Risk Aversion (CARA) functions, by means of which a decision maker’s

preferences about value and risk can be represented in a rather simple way, for instance by

means of a linear function of both expected (mean) profits and a simple proxy of risk such

as the variance of profits [26, pp. 567 and 713], in policy-making practice it will be hardly

feasible to gather proper evidence for assessing the validity of a particular functional form

for describing decision makers’ preferences, and even more so when there are stakeholders
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Figure 1: Strategies outcomes. Adapted from [53].

risk are mixed in a way which is unusual in economics. Moreover, the MSE

approach provides no information on the opportunity cost of the constraint,

and the marginal gains from relaxing its level (as would optimization under

constraint do in the deterministic case).

From our point of view, the limits of this MSE approach, and more gener-

ally of the approaches based on optimization under constraints in the stochas-

tic case, come from the fact that the elements of the system that have a value

are not treated in a similar way (as it would be the case in a multi-attribute

utility function).

with heterogeneous preferences. In the face of this complexity, the typical MSE approach

finally “mixes” value and risk in rather ad-hoc ways.
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The present paper focuses on the assessment of resource management

strategies, and formally addresses the issue of sustainable dynamic decision-

making under uncertainty, in a multicriteria framework accounting for possi-

bly conflicting issues. Our objective is to compute the likeliness of manage-

ment strategies to avoiding crises in a fishery. For this purpose, we use the

stochastic viability approach. Viability has been advocated to be a relevant

framework to address sustainability issues. In the absence of uncertainty,

problems of dynamic control under constraints refer to viability [2].11 Under

uncertainty, stochastic viability aims at defining the probability to satisfy

these constraints over time [4, 16, 21].

The main ideas consist in the following conceptual and methodological

points. Sustainability objectives are defined by constraints on indicators

which should be satisfied at all times. Management strategies are evalu-

ated with respect to their probability of success in satisfying the constraints

over time. This probability is used as a common currency to evaluate and

rank alternative policies (management strategies). In the discounted profit

approach, the common currency is the expected present value. In our ap-

proach, the common currency is the probability to achieve all the objectives

over time. This probability is also used as a sustainability metrics to ex-

hibit the necessary trade-offs between sustainability objectives and risk. In

particular, this allows us to clearly describe the interactions between stock

dynamics, sustainability objectives and management strategies, which is em-

phasized as important by [34]. This is made possible by the fact that our

approach treats all the elements of the system that have a value in a sim-

ilar way, as constraints. Preferences are characterized by the sustainability

thresholds, and the objective is to maximize the probability to achieve the

sustainability constraints.

11This approach has been applied to sustainable management of fisheries, e.g., in [6, 7,

18, 22, 36].

11



As the described framework provides tools to define optimality, value and

marginal value, we argue that stochastic viability is a multicriteria frame-

work which is closer to the economic approach than the usual multicriteria

approaches such as MSE. In particular, the stochastic viability approach

makes it possible to characterize “sustainability” production possibility fron-

tiers that could be the basis of social choice or bargaining process over the

various sustainability issues [35].

3 A risk metrics for sustainability objectives

In this section, we describe the theoretical framework proposed to assess re-

source management strategies. This framework defines optimal viable man-

agement strategies under uncertainty, and makes it possible to compare the

effectiveness of given (sub-optimal) management strategies. This framework

also displays the necessary trade-offs between sustainability objectives.

3.1 Management strategy assessment by stochastic vi-

ability

Here, we formalize the decision problem and describe the technical develop-

ment. The general model and method below are appropriate for setting up

any stochastic viability analysis. We provide examples based on the case-

study to be addressed in next section.

Dynamical system

We start with a resource harvesting model, which accounts for the dynamics,

the uncertainties and the exploitation decisions. For this, let us consider the

following discrete-time control dynamical system

x(t+ 1) = G
(
t, x(t), u(t), ω(t)

)
, t = t0, . . . , T − 1 , x(t0) = x0 , (1)
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where

• the time index t is discrete, belonging to T = {t0, . . . , T} ⊂ N; the time

period [t, t + 1[ is a year for instance; t0 is the initial time ; T is the

horizon, taken finite here;

• the state x(t) is a vector belonging to X ⊂ Rn; x(t) ∈ Rn may be a

vector of abundances at ages for one or for several species;12

• the control u(t) ∈ U ⊂ Rp may represent catches or harvesting effort;

• ω(t) ∈ W ⊂ Rq denotes an uncertainty which affects the dynamics

at time t; this may include recruitment or mortality uncertainties in

a population dynamic model, climate fluctuations or trends, unknown

technical progress, or price uncertainty;

• G : T × X × U × W → X is the dynamics as, for instance, one of

the numerous population dynamic models, such as logistic or age-class

models; it may also include capital accumulation dynamics;

• x0 ∈ X is the initial state for the initial time t0.

Uncertainty and scenarios

In what follows, the initial state x0 is supposed to be deterministic and

known. For the time being, we make no assumptions that ω(t0), . . . , ω(T−1)

are random variables: they just form a sequence of vectors. We define

Ω := WT−t0 (2)

as the set of scenarios, the notation for a scenario being

ω(·) :=
(
ω(t0), . . . , ω(T − 1)

)
. (3)

12Note that the state vector can also represent abundances at different spatial patches,

or include capital stocks (boats or infrastructures) or labor.
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Trajectories

The notation u(·) means a control trajectory

u(·) :=
(
u(t0), . . . , u(T − 1)

)
(4)

whereas

x(·) =
(
x(t0), . . . , x(T − 1), x(T )

)
(5)

stands for a state trajectory.13

Decision rules and management strategies

When uncertainties affect the dynamics, closed loop or feedback controls

u(t) = û
(
t, x(t)

)
taking the uncertain state evolution x(t) into account dis-

play more adaptive properties than open-loop controls u(t) depending only

on time. A (state) feedback is a mapping û : T × X → U. A feedback is a

decision rule which assigns a control u = û(t, x) ∈ U to any state x for any

time t.14 From now on, we shall use the term (management) strategies to

refer to feedback decision rules.

Sustainability objectives described with indicators and thresholds

Consider K real-valued functions15 Ik : T×X×U→ R, for k = 1, . . . , K, that

represent instantaneous indicators, having economic or ecological meaning

(e.g., profit, annual catches, or spawning stock biomass). Attached to them

are thresholds (reference points) τ1 ∈ R, . . . , τK ∈ R, measured in the

13There is one more state than control because, by (1), there is a final state x(T )

produced by an ultimate control u(T − 1).
14With such a definition, we implicitly assume that the state is (at least partially)

measured. As a consequence, we shall not consider the case where only a corrupted

and/or partial observation of the state is available to the decision-maker.
15In fact, at final time T , the indicator Ik(T, x, u) does not depend on u because, as

noticed, there is a final state x(T ) but the ultimate control is u(T − 1).
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same unit (e.g., money, tonnes). Sustainability objectives are represented by

constraints16

Ik
(
t, x(t), u(t)

)
≥ τk , ∀k = 1, . . . , K , ∀t = t0, . . . , T . (6)

We aim at identifying bio-economic trajectories
(
x(·), u(·)

)
solutions of (1)

and satisfying all the constraints k = 1, . . . , K at all times t = t0, . . . , T .

For this purpose, we adopt the viability approach. A trajectory that does

not satisfy one (or more) of the constraints at some time is not viable. In

the viability approach, once the sustainability thresholds are chosen, there

are trade-offs neither between sustainability issues nor between time periods

(as it would be the case with discounted utility). At a given time period, the

violation of some of the sustainability constraints cannot be compensated by

good outcomes in other sustainability dimensions. The violation of the sus-

tainability constraints at some time periods cannot be compensated by good

outcomes at other time periods. The requirement to satisfy all the constraints

at all times thus reflects the idea that sustainability has to encompass eco-

logical and economic issues, in an intergenerational equity perspective. This

approach echoes the “stewardship” approach to sustainability, as discussed

in the Stern review [50].

All trade-offs are made when the thresholds are defined [35]. Moreover,

in a stochastic framework, the constraints may be violated with some proba-

bility. It is thus important to define how to achieve given constraints with a

high probability, as well as to describe the trade-offs between sustainability

objectives and the risk to fail achieving them.

16We consider sustainability “goods,” for which an ad-hoc indicator is defined. This

indicator is then constrained to be above a prescribed thresholds. For “bads,” such as

pollution, one can take their negative value as an indicator (e.g., for CO2 concentration).
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Viability probability of a management strategy

In an uncertain framework, it is generally impossible to satisfy the constraints

for all scenarios ω(·). Following [16, 19], we adapt the viability approach to

the stochastic case, and evaluate strategies.

For any management strategy û, initial state x0, and initial time t0, let

us define the set of viable scenarios by:

Ωû,t0,x0 :=


ω(·) ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t0) = x0

x(t+ 1) = G
(
t, x(t), u(t), ω(t)

)
u(t) = û

(
t, x(t)

)
Ik
(
t, x(t), u(t)

)
≥ τk

k = 1, . . . , K

t = t0, . . . , T


. (7)

For a given strategy û and a given scenario ω(·), notice that the dynamics (1)

produces a state trajectory x(·) and a control trajectory u(·) once one applies

the strategy u(t) = û(t, x(t)). Therefore, any viable scenario ω(·) in Ωû,t0,x0 is

such that the state and control trajectory
(
x(·), u(·)

)
driven by the strategy

û satisfies the constraints (6).

A management strategy û is “more viable” than another if the correspond-

ing set of viable scenarios is “larger.” To give precise meaning to this, we

shall from now on assume that the set Ω of scenarios is equipped with a prob-

ability distribution P.17 The notation ω(·) =
(
ω(t0), . . . , ω(T )

)
still denotes

a generic point in Ω; however, it may also be interpreted as a sequence of

random variables when ω(·) is identified with the identity mapping from Ω to

Ω. In practice, one assumes that the random variables
(
ω(t0), . . . , ω(T − 1)

)
are independent and identically distributed, which defines the probability P,

or that they form a Markov chain, or a time series.

17The set Ω, product of copies of R, is equipped with its Borel σ-field. The mappings

G, I1, . . . , IK , and all management strategies û are supposed to be measurable.
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We say that P [Ωû,t0,x0 ] is the viability probability associated with the

management strategy û, the initial time t0, and the initial state x0. It is the

probability that a sequence of random variables
(
ω(t0), . . . , ω(T−1)

)
belongs

to the set of viable scenarios of the given strategy û. This probability is a

measure of the likeliness of success of the given strategy for these objectives

and the initial state.18

3.2 A “value function” for strategies and thresholds

In the stochastic viability framework described above, management strate-

gies can be ranked with respect to their viability probability, for any given

set of sustainability thresholds τ1, . . . , τK .

18From a theoretical point of view, it is possible to determine the strategy that maximizes

the viability probability by solving the dynamic programming equation characterizing

the viability problem [17], and one can obtain a closed-form solution for some problems

(see subsection 3.3). It may, however, be difficult to compute the associated viability

probability. From a practical point of view, for a given strategy (the optimal one, or

any sub-optimal strategy) it is possible to estimate the viability probability by means of

Monte Carlo simulations. A random generator is used to produce scenarios following the

distribution P. For each scenario, the given management strategy is applied, and we test

if the viability constraints in (7) are respected over the planning horizon. When this is

true, we say that the viable scenario is viable for the management strategy. When the

number of scenario tested is large, the frequency of viable scenarios can be used as an

approximation of viability probability.
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To stress the dependency upon thresholds, let us introduce the notation

Π(û, τ1, . . . , τK) := P


ω(·) ∈ Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t0) = x0

x(t+ 1) = G
(
t, x(t), u(t), ω(t)

)
u(t) = û

(
t, x(t)

)
Ik
(
t, x(t), u(t)

)
≥ τk

k = 1, . . . , K

t = t0, . . . , T


. (8)

This viability probability is a common currency to evaluate the consistency

of strategies and sustainability objectives. The higher this probability, the

lower the risk of violating the sustainability constraints.

When the viability probability function Π(û, τ1, . . . , τK) smoothly varies

w.r.t. thresholds levels (as will generally be the case when the probability

distribution P has a smooth density), the marginal variation of viability

probability with respect to the threshold level τk is ∂
∂τk

Π(û, τ1, . . . , τK).

The viability probability provides a tool for

• ranking management strategies with respect to their ability to achieve

a set of sustainability objectives represented by constraints on sustain-

ability indicators which have to be satisfied over time,

• evaluating the difficulty of achieving a given objective, with a measure

of the marginal value of increasing it.

Note that all the objectives are accounted in their own unit, and that the

common currency of the approach is the probability that all the objectives

are satisfied over the planing horizon.

Exhibiting trade-offs between objectives

Suppose now that we fix a confidence level π ∈ [0, 1] and that we focus on

threshold levels τ1, . . . , τK which make it possible to achieve Π(û, τ1, . . . , τK) =
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π. The marginal rate of substitution between thresholds τi and τj is defined

by
∂Π(û, τ1, . . . , τK)/∂τi
∂Π(û, τ1, . . . , τK)/∂τj

=
∂τj
∂τi |Π(û,τ1,...,τK)=π

(9)

Along an iso-value viability probability curve, this rate measures the nec-

essary trade-offs between sustainability objectives, at a given risk level, i.e.,

how much one objective must be reduced to increase the other without chang-

ing the viability probability.

3.3 Optimal management strategy

In our approach, a management strategy is preferred if it results in a higher

viability probability. We define an optimal strategy û? as one which max-

imizes the viability probability Π(û, τ1, . . . , τK) for a given set of economic

and ecological sustainability thresholds τ1, . . . , τK over all possible strategies

û. The maximal viability probability

max
û

Π(û, τ1, . . . , τK)

is an upper bound for any strategy. Notice that optimal strategies depend

on the objective levels τ1, . . . , τK .

From a general point of view, determining optimal strategies in dynam-

ical optimization problems under uncertainty is not easy, either for optimal

control or for stochastic viability problems. Such strategies are given by a

Dynamic Programming equation, but the curse of dimensionality is an obsta-

cle [17]. In specific cases, it is possible to characterize such strategies when

the bioeconomic system satisfies some restrictive, but sensible, conditions.

For this purpose, we refer to the mathematical result in [19]. We shall here

extend the interpretation of the result in [19] to the fisheries management

issue. In particular, we interpret the conditions in economic and ecological
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terms, and we provide an interpretation of the optimal management strategy.

Consider a fishery model, with a dynamics G which is increasing with the

state x, i.e., the larger the stock one year (ceteris paribus), the larger the

stock the following year, as well as decreasing with the control u, i.e., the

larger the effort one year (ceteris paribus), the lower the stock the following

year. Consider also that the control u is scalar and belongs to a closed

interval U := [u[, u]].19

Consider that the sustainability objectives satisfy the following mono-

tonicity properties.

• One of the indicator is increasing with the state x (i.e., the higher the

state, the higher the indicator) and continuous in the control u. This

indicator can be considered as “economic.”

• The other indicators I2, . . . , Ik are increasing with the state x (i.e.,

the higher the state, the higher the indicator), and decreasing with the

control u (i.e., the higher the control, the lower the indicator). These

indicators, favoring high stocks and low effort, can be considered as

“ecological” indicators.

Under these conditions, the mathematical result of Proposition 1 in [19]

applies. An optimal strategy for maxû Π(û, τ1, . . . , τK) is given by

û?(t, x) := inf{u ∈ [u[, u]] | I1(t, x, u) ≥ τ1} . (10)

In our fishery issue, this management strategy maximizing the viability

probability can be interpreted as a “precautionary rule” in the following

19These assumptions make sense for single species management (or for several species

with economic interactions but no biological interactions), when the recruitment of next

year only depends on the current spawning stock biomass. They do not hold for models

with several species with biological interactions (such as prey-predator models).
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sense. It consists in maximizing the escapement level, given the satisfaction

of the economic objective, e.g., a guaranteed profit for the fishery. Once the

economic threshold is reached, harvesting stops. This strategy ensures the

satisfaction of the economic objective at present time while maximizing the

probability to achieve the economic and ecological objectives in the future.20

3.4 Sub-optimal strategies ranking

When it is not possible to identify an optimal strategy (for example, because

it cannot be computed), it is of interest to compare given strategies. While

we recognize the pitfalls of making such comparisons with an ad hoc reduced

number of management strategies, our present aim is simply to compare the

properties of various in-use policies. This could be useful to support decision-

making when given strategies are discussed by stake-holders.

Within our framework, a given strategy performs better than another

one for given sustainability thresholds τ1, . . . , τK if its viability probability

is larger. The viability probability of the strategies provides a metrics to

rank them. Moreover, it is possible to define on which range of sustainability

thresholds one strategy performs better than the other in terms of viability

probability. Letting sustainability thresholds vary, we can obtain regions

where one strategy performs better than the other one.

We illustrate such an analysis in the next section, in the Chilean Jack-

Mackerel fishery case.

20Note that, for many fisheries, the ICES management strategy is based on the somehow

opposite strategy: the catch level is set at the highest level compatible with the biological

conservation target at the following year, given a confidence interval (precautionary fishing

mortality value) [18, 34]. By nature, this strategy leads the stock close to the ecological

constraint, with a risk of fishery closure in the short-medium term if the stock falls below

the biological conservation threshold. The strategy presented in this section is conservative

and results in keeping the resource stock as “far” as possible from the biological threshold,

given the economic objective.
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4 A case-study: the Chilean Jack-Mackerel

fishery

The Jack-Mackerel fishery is currently the largest in Chile, both in terms of

annual catch volume (about 1.5 million tons in 2008, while it peaked at 4.5

million tons in 1995) and economic value generation (US$ 400-500 millions

of yearly sales in recent years). Like other small pelagic fisheries, this fishery

is faced with the recurrent appearance of El Niño uncertain cycles. Since

the late 1990s, the Chilean Jack-Mackerel fishery has been managed under

a yearly-defined Total Allowable Catches (TAC) regulation, complemented

since year 2001 with an individual (company allocated) quota scheme [25].

The management scheme has had a particular concern about the stability of

quota levels over time. Additionally, since the mid-2000s the Jack-Mackerel

fishery has been one of the pioneering in Chile to include explicitly biology-

related risk indicators in its management practice. These indicators have

mostly been used as additional information within the policy-decision pro-

cess, with the objective of capping biological (collapse) risk. For instance, in

a technical report of SUBPESCA,21 which is the regulatory body for Chilean

fisheries, exogenously defined quota levels are associated with the resulting

probabilities of reducing the spawning stock biomass (SSB) available at a

future year (2013), relative to its level at year 2004. In [32, p.33-39], such

calculations are extended to different time horizons. Nonetheless, none of

these analyses are based on a formal framework to trade off risk indicators

and measures of economic return. Despite this management procedure, the

Chilean Jack-Mackerel TAC fell by 76% between 2010 and 2011.22

21Subsecretaria de Pesca, Valparáıso - Chile, SUBPESCA (2004) Cuota Global Anual

de Captura de Jurel, Año 2005, p. 26-27.
22The global annual quota fell from 1,300,000 tons in 2010 to 315,000 tons in 2011.
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4.1 Bioeconomic model

Biology

We describe the dynamics of the Chilean jack mackerel23 stock by an age-class

model [44, 51] with a Ricker recruitment function.24

Time is measured in years, and the time index t ∈ T represents the

beginning of year t. Let A = 12 denote the maximum age group, and

a ∈ {1, . . . , A} an age class index, all expressed in years. The vector N =

(Na)a=1,...,A ∈ RA
+ is made of abundances at age: for a = 1, . . . , A− 1, Na(t)

is the number of individuals of age between a− 1 and a at the beginning of

year t; NA(t) is the number of individuals of age greater than A− 1.

A dynamics of the form of eq. (1) is detailed in the Appendix (eqs. 19–

21–22). The state vector (A+ 1-dimensional) is

x(t) =
(
N1(t), . . . , NA(t), SSB

(
N(t− 1)

))
, (11)

where the spawning stock biomass (SSB) is defined in the Appendix (eq. 21).

The fishing activity is represented by a fishing effort multiplier λ(t), sup-

posed to be applied continuously during the period t, with the notations of

subsection 3.1. The control is thus

u(t) = λ(t) . (12)

In what follows, we shall take the initial year t0 = 2002.

Total annual catches Y , measured in million tons, are given by the Bara-

nov catch equation (20) in the appendix.

23Computational details, data, and parameters are described in the Appendix.
24The Ricker model is frequently used for species with highly fluctuating recruitment,

involving high fecundity as well as high natural mortality rates [5]. These two features

characterize small pelagic species, such as jack mackerel.
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El Niño cycles model

The El Niño phenomenon is the result of a wide and complex system of

climatic fluctuations between the ocean and the atmosphere. Nowadays, it

is considered to be an important signal of the global weather. However, its

frequency and intensity are uncertain.

We simulate the El Niño uncertain cycles using a model with a periodic

part and an error term, to produce a cycle with random shocks. Details can

be found in the Appendix.

Economics

We make the following economic assumptions, which are standard ([11, 12,

45]).

• Demand is infinitely elastic. Indeed, harvest from this fishery is mainly

processed as fish meal, a commodity faced with high demand substi-

tution. This fishery is thus essentially a price-taking industry, and we

assume that any unit harvested is sold for a fixed price, invariant in

time.

• Per unit harvest costs (either in numéraire or in effort unit) are not

dependent of harvest size, but vary with population abundance. These

costs increase as the size of the population decreases. This assumption

is equivalent to assume that fishing effort (defined in time unit, for

example) has a constant unit cost, and that Catches Per Unit of Effort

(CPUE) decrease when the stock decreases.

For fisheries satisfying these micro-economic assumptions, price and costs

do not have a qualitative effect on our results. As quotas are defined in

quantity terms in practice, it makes sense to eliminate price and fishing costs

from the profit expression, and to concentrate on harvest quantity and fishing
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effort as proxy of revenue and fishing costs. This assumption is the same as

in [12], [45] and [47], in which the expected discounted sum of harvest is

maximized instead of the expected discounted sum of profit.

Under these assumptions, as the CPUE decreases when the stock size

falls, there is a minimal stock size under which the marginal cost of fishing

effort (which is constant) is higher than the marginal revenue of fishing effort.

The marginal profit, defined as the difference between marginal revenue and

marginal fishing cost, is then negative. We assume that no extra fishing effort

is done once the marginal profit is nil. This implies that there is an upper

value for the fishing effort.

4.2 Viability assessment of constant quota and con-

stant effort management strategies

Use the stochastic viability approach, we compare management strategies

for the Chilean jack mackerel fishery. We focus on two different types of

strategies: constant quota and constant fishing effort25 both stationary over

a fixed period of time (T = 22 years). For these classes of strategies, we

compute their viability probability associated to two constraints, biological

and economical.

Economic and biological constraints

On the one hand, we consider an economic constraint on the annual yield

Y (N(t), λ(t)) ≥ ymin , ∀t = t0, t0 + 1, ..., T , (13)

25There are two reasons why we consider these two managements strategies. First, they

correspond to policies that have been historically used to regulate this fishery. Second,

discussing these strategies will allow us to refer to the “price versus quantity” debate in

fisheries economics (see subsection 4.3).
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where the parameter ymin is a minimum level of landings (or annual total

catches) to be guaranteed each year. This parameter takes values from 0.7–

1.4 million tons, corresponding to relevant catch levels observed in this fishery

all along the 2000s. Using the notation of §3.1 and §4.1, the constraint (13)

corresponds to the following indicator and threshold:

I2(t, x, u) := Y
(
N, λ

)
and τ2 := ymin . (14)

On the other hand, we consider the biological constraint on the spawning

stock biomass SSB

SSB
(
N(t)

)
SSBvirg

≥ p , ∀t = t0, t0 + 1, ..., T , (15)

where SSBvirg = 10.2 million tons is the virginal spawning stock biomass

of the fishery, based on Chilean research fishery state institute (IFOP)’s

estimations. The parameter p denotes the desired percentage of SSBvirg

expected to be preserved over time. In our analysis, parameter p takes values

from 0.15 to 0.25, which means that SSB(N(t)) should be above the values

of 15% to 25% of the virginal spawning stock biomass, respectively.26 Using

the notation of §3.1 and §4.1, the constraint (15) corresponds to the following

indicator and threshold:

I1(t, x(t), u(t)) :=
SSB

(
N(t)

)
SSBvirg

and τ1 := p . (16)

Viability assessment of constant quota and constant effort strate-

gies

We consider two class of strategies, based respectively on constant efforts

and constant quotas.

26In the case of South African small pelagic fisheries (sardines and anchovies) in the

late 1980s and early 1990s, the fishery regulators considered p = 0.2 when applying such

biological criteria [8].
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A constant effort strategy (CES) is a constant strategy defined by

λ̂(t, N) = λ , (17)

yielding the constant effort27 λ(t) = λ.

A constant quota strategy (CQS) is a strategy implicitly defined by

λ̂(t, N) = λ ⇐⇒ Y
(
N, λ

)
= Y , (18)

when possible (else λ̂(t, N) = 0).

We define, within each class of management strategy, the ‘optimal’ level

of the policy instrument for a given set of economic and biological thresholds,

i.e., the level which results in the highest viability probability (best constant

quota, or best constant effort, to achieve the given sustainability thresholds).

For each couple (p, ymin) ∈ [0.15, 0.25] × [0.7, 1.4] of biological and eco-

nomic thresholds, we compute the highest viability probability for each type

of strategy. The viability probability is approximated by a frequency given

by Monte Carlo simulations (over 1, 000 simulations), and we compute a 95%

confidence interval at which the viability probability belongs. We obtain two

3D graphics (one for each type of strategies) as can be seen in Fig. 2.

Both graphics in Fig. 2 are a representation of the “value” of the strat-

egy as a function of the sustainability thresholds (see eq. 8). For any given

couple of sustainability thresholds, one can rank the alternative management

strategies using their viability probability. This is useful to identify circum-

stances under which each strategy is likely to perform better than the other.

Fig. 3 exhibits the strategy with the best viability probability for each couple

(p, ymin) ∈ [0.15, 0.25] × [0.7, 1.4] of biological and economic thresholds. We

represent the domains, in terms of sustainability thresholds, where one strat-

egy strictly performs better than the other, that is the domain at which the

27In our model, fishing mortality is proportional to fishing effort when the fishing pat-

tern, i.e., the technology, is constant. The constant effort strategy is thus identical to the

constant fishing mortality strategy depicted here.
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Figure 2: Maximal viability probability of effort (up) and quota (bottom)

strategies (1,000 Monte-Carlo simulations).

confidence interval for one type of strategy lies strictly above the confidence

interval for the other strategy. The best policy type is identified by a specific

color: the light gray area identifies the biological and economic thresholds

(p, ymin) where the best constant quota strategy has higher probability than

the best constant effort strategy, the black area has exactly the opposite

meaning, and the intermediary dark gray area identifies the threshold levels

at which the performance of both policy types cannot be statistically distin-

guished (that is, where the confidence intervals cross). Interestingly, Fig. 3
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depicts pairs of thresholds at which a given type of strategy strictly dom-

inates (in the sense of maximizing the viability probability) over the other

type of strategy. It is thus helpful to select sustainability objectives, and the

best strategy to achieve them. Our simulations show that CES performs bet-

ter than CQS for all thresholds achievable with a viability probability larger

than 0.1.

0.1

0.9
0.95

Most viable policy for possible sustainability thresholds
(with iso-probability curves)

E
co

no
m

ic
 th

re
sh

ol
d 

(m
in

im
al

 c
at

ch
es

) 1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Ecological threshold (share of the virginal biomass)
0.14 0.16 0.18 0.20 0.22 0.24 0.26

Quota dominates

Effort dominates

Statistical
indeterminancy

0.95

0.90

0.10

Figure 3: Comparison of the CES and CQS policy families (1,000 Monte

Carlo’s simulations).

Such graphical representations may be useful in the choice of sustain-

ability objectives, by exhibiting the necessary trade-offs between the policy

objectives represented by the sustainability thresholds [35], along with the

consideration of the related risk to fail. The trade-offs between thresholds
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for a given risk level (eq. 9) can be obtained by determining the thresh-

olds achievable at the given risk level. We have plotted lines denoting the

iso-probabilities at a level of 95%, 90% and 10% in Fig. 3. The thresh-

olds (p, ymin) below a given line are guaranteed with a viability probability

no lower than the corresponding percentage. Note that these trade-offs are

between sustainability objectives, and not between different management

strategies.

4.3 Economic interpretation: a particular case of “prices

versus quantities”

We can interpret the previous result on the dominance of effort over quotas

strategies in the context of the economic debate on “prices versus quantities”

in fisheries economics. Weitzman [52] examined analytically the regulatory

issue of instrument choice when future fish stock is uncertain. He noticed

that

the conventional wisdom among fisheries economists is that,

for regulating the fishing industry, “prices” are an instrument in-

ferior to “quantities.” The argument is grounded [...] on the idea

that regulating fisheries with price is less efficient than regulating

with quantities - in part because of the potential problems associ-

ated with highly uncertain randomly fluctuating fish stocks. [52,

p.326]

First note that a management strategy using direct control of fishing effort

has similar features as tax based management [15, 52]. By imposing a max-

imal fishing effort, one imposes a maximal marginal cost, which interrupts

the fishing period before the open access equilibrium. When the stock level

is uncertain and considering a given catch level (or expected one), setting a

constant effort implies uncertainty on catches, and thus on revenue, while the

30



costs are certain. On the contrary, setting a constant quota yields a certain

revenue but uncertain costs. Depending on the shape of revenue and cost

functions, the expected profit of the two strategies is different [28]. Under

usual economic conditions, when the revenue function is linear in the catches

and the cost function convex (which is the case when the catch rate depends

on the size of the stock), the constant effort strategy dominates the constant

quota strategy in terms of expected profit [43]. When present catches affect

future availability of the resource, constant effort strategy reduces the risk of

under-utilization of capital and over-exploitation of the stock. Nevertheless,

when catches per unit of effort are also stochastic, constant quota strategies

may be superior to constant effort strategies [15]. Management with quotas

is also superior when considering market effects (when the prices depend on

the landed quantities, with a low demand elasticity), when utility is defined

as the sum of industrial profit and consumer’s surplus [15, 28], or for some

specific fisheries (schooling fisheries without search costs) [27, 29, 33].

In the spirit of these results, we analyze the relative performance of either

fishing effort or quota regulation tools when the purpose of the regulator is

not to maximize expected profit, but to sustain the fishery by avoiding both

economic and biological crises. In our model of the Chilean Jack-Mackerel

fishery, and for sustainability objectives achievable with a viability proba-

bility higher than 10%, our simulations show that effort strategies are never

dominated by quota strategies.28 Our results mean that effort strategies dom-

inate quota strategies for elastic markets and catches depending on the stock

size when one considers sustainable management, with economic and ecolog-

ical objectives. The stochastic viability results and the economic results of

28Quota strategies only dominate effort strategies for very high sustainability thresholds,

which can be guaranteed with only a probability close to zero (i.e., much less than 0.1).

Note also that for thresholds achievable with a viability probability very close to one, both

strategies cannot be formally ranked due to imprecision (confidence intervals).
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[28, 43, 52] give the same recommendations for this type of fisheries.

Our methodology is general, even if, as for the results of the previously

described economic literature, our result is not general to any stochastic vi-

ability analysis of a fishery facing uncertainty. The instrument yielding the

highest viability probability may depend on both the properties of the bio-

economic system, and on the nature and level of the viability constraints.

From a general point of view, as for the economic approach, the optimal

strategy in the stochastic viability framework may not correspond to a “sim-

ple rule” (constant quota or effort), and these “second-best” instruments

have to be compared for each case under study.

5 Conclusions

Many natural resources management problems, such as fisheries manage-

ment, are marked by dynamics and uncertainty. When there are conflicting

economic, ecological and social objectives, multicriteria evaluation methods

are required to rank the potential management strategies, taking into ac-

count uncertainty. This is the purpose of the Management Strategy Eval-

uation approach, which characterizes potential management strategies with

a set of performance statistics. However, due to the absence of a “common

currency” for conflicting issues, the decision-makers are left without tools to

rank the various management strategies.

To contribute to decision making in natural resource management prob-

lems, we have developed a framework based on stochastic viability. A set

of constraints represents the various sustainability objectives, and the con-

straint thresholds are treated as variable parameters representing sustainabil-

ity preferences. Within this framework, management strategies are ranked

according to the probability that the resulting intertemporal trajectory satis-

fies all of the objectives over the planning horizon. An optimal management
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strategy is one that results in the highest viability probability. The “com-

mon currency” to rank the various management decisions is the viability

probability.

This approach treats all the elements of the system that have a value in

the same way, as constraints. Preferences are characterized by the sustain-

ability thresholds, and the objective is to maximize the probability to achieve

the sustainability constraints. This approach is an alternative to the tradi-

tional economic approach when it is not possible to define a multi-attribute

utility function. It is also a good representation of decision problems involv-

ing several stake-holders that do not accept trade-offs between (sustainabil-

ity) issues, and are interested in the sustained level of their indicator.

This stochastic viability framework also allows us to exhibit the trade-

offs between sustainability objectives (thresholds) and viability probability.

It makes it possible to describe the set of sustainability objectives that can

be achieved given an assumed risk level, helping the decision maker in the

definition of sustainability thresholds.

The proposed stochastic viability methodology is general and can be ap-

plied to a wide range of problems. As an example, we examine the man-

agement of a real fishery, with estimated parameters. Using numerical tech-

niques, we examine the efficiency of effort and quota based management

strategies in achieving sustainability objectives defined as constraints on bio-

logical and economic indicators. Monte Carlo simulations are run to estimate

the viability probability of each policy, with respect to the objectives. We

show that the joint objectives of sustaining catches and preserving a part of

the stock are achieved with a higher probability with effort-based strategies

than with quota-based strategies.

The contribution of the paper is twofold. On the one hand, we develop

a framework which provides a common currency to compare management

strategies and to describe trade-offs between sustainability objectives, in a
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complementary way to the MSE approach. On the other hand, we contribute

to the economic literature on the dominance of either quotas or effort strate-

gies. We reinforce the results obtained in the expected profit framework to

a multi-criteria framework accounting for conservation issues. The proposed

approach can thus be used to fill the gap between the optimality literature

of economic theory and practical decision-making.

A Chilean Jack-Mackerel case study: data,

parameters and model

This appendix details the model in §4.1. The model is age-structured, with

a Ricker stock-recruitment function. For age groups a = 2, . . . , A− 1, abun-

dance dynamics is given by

Na+1(t+ 1) = exp (−(Ma + λ(t)Fa))Na(t) , a = 2, . . . , A− 1 , (19)

where Ma is the natural mortality rate of individuals of age a, Fa is the

mortality rate of individuals of age a due to harvesting between t and t+ 1,

supposed to remain constant during period t (the vector (Fa)a=1,...,A is termed

the exploitation pattern).

Total annual catches Y , measured in million tons, are given by the Bara-

nov catch equation [44, p. 255-256]:

Y
(
N, λ

)
=

A∑
a=1

$a
λFa

λFa +Ma

(1− exp (−(Ma + λFa)))Na , (20)

where ($a)a=1,...,A are the weights at age.

The spawning stock biomass (SSB) is given by the expression

SSB(N) :=
A∑
a=1

γa$aNa , (21)
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where (γa)a=1,...,A are the proportions of mature individuals (some may be

zero). Annual recruitment is a function of the SSB with a two years delay,

i.e., depending on the spawning stock biomass of two periods ago:

N1(t+ 1) = αSSB
(
N(t− 1)

)
exp

(
βSSB

(
N(t− 1)

)
+ w(t)

)
, (22)

where {w(t)} is a random process reflecting the impact of climatic factors

in the stock recruitment relationship. Following the statistical analysis in

[53], we simulate El Niño uncertain cycles using a sinusoidal function with

random shocks.29 The random process w(t) supposed to capture the effects

of the El Niño phenomenon has a periodic part and an error term, w(t) =

−0.12× niño(t) + ε(t), where

• the error terms {ε(t)} are defined as ε(t) = 0.71ε(t− 1)− 0.65ε(t− 2) +

µ(t), where {µ(t)} is a sequence of i.i.d. random variables with Normal

distribution N (0; 0.18),

• niño(t) = 1{−1.2 sin(18.19+2π(t−1951)/3.17)>0.5} is a dummy (0 or 1) variable

reflecting the presence of El Niño phenomenon.

We use the parameters estimation provided by [53], which rely on official

data from the Instituto de Fomento Pesquero (IFOP).30 Parameters of the

29Based on Chilean marine biologists advice, the authors of [53] calculated the occur-

rence of El Niño phenomenon from the National Oceanic and Atmospheric Administration

(NOAA) data on sea surface temperatures measured at the region known as Niño 3.4

(120W-170W, 5N-5S). NOAA computes the Oceanic El Niño Index (ONI) as a difference

of the sea surface temperature with respect to the historical average of temperatures ob-

tained from the period 1971-2000. Then a time average is computed, and it is said that El

Niño occurs when this average is greater than 0.5 oC (see the expression of niño(t)). The

ONI is modeled via a sinusoidal function, whose parameters are estimated via statistical

methods (using a non-linear iterative algorithm [53, p. 64]), to represent the different

cycles of El Niño.
30Subsecretaria de Pesca, Valparáıso - Chile, SUBPESCA (2000) Cuota Global de Cap-
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Ricker recruitment function at expression (22) were estimated by using linear

time-series analysis. The estimated parameters were α = e2.39 and β =

2.2 · 10−7 [see 53, p. 56]. The values for parameters Ma and Fa are taken

from IFOP’s official model for this fishery, so that Ma is equal to 0.23 for all

a and Fa is equal to the vector of averages values of Fa during 2001-2002.31
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