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Abstract

We study technology adoption in a dynamic model of price competition.

Adoption involves disruption costs and learning by doing. Because of dis-

ruption costs, the adopting firm begins in a market disadvantage, which may

persist if its rival captures the buyers it needs to learn the technology. The

prospect of future rents by the rival results in: (i) a failure to adopt Pareto

superior technologies; (ii) an equilibrium preference for the choice of tech-

nologies with smaller (discounted) social value but flow payoffs that are re-

ceived earlier in time; (iii) more technologies being adopted as the adopting

firm is exposed to more competition.

1. Introduction

The adoption of new technologies is at the center of productivity growth in many

industrial sectors. In most of these industries, however, the nature of the adoption
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process affects the competitive position of firms, creating losses as well as gains.

This article develops a simple model of technology adoption with two distinctive

features. First, adoption involves switchover disruption costs: the firm adopt-

ing the technology becomes initially less productive than non-adopters. Second,

adoption entails learning by doing: the more the firm uses the technology, the

more productive it gets.

The key observation of this article is that, upon adoption, non-adopting firms

have incentives to undercut prices to prevent the learning of the new technology—

as this makes the adopting firm a weaker competitor. The expectation of future

rents by non-adopters places a pecuniary cost on the adopting firm that, in some

cases, renders the adoption of Pareto superior technologies unprofitable. In other

words, as ‘stealing’ current buyers from the adopting firm creates future rents

without adding any social value, buyers become an artificially overpriced ‘com-

modity’ in the market. This overpricing may render adoption unprofitable.

This article studies these issues in a dynamic duopoly model of price compe-

tition in which the adopting firm has a limited amount of time to learn the new

technology. This time limit may come from the threat of imitation, the expiration

of a patent, etc. In the model, firms offer potentially differentiated products to a

sequence of short-lived buyers with unit demand. The main advantage of this set-

ting with respect to others, i.e. a Cournot model of competition, is that it isolates

the dynamics of adoption by assuming away static equilibrium distortions.

Within this framework, we first confirm formally that, in some cases, the

adopting firm prefers to stick to an old technology rather than to switch to a better

one. Second, we show that, for the cases of interest, between two technologies

with the same (discounted) social value, the adopting firm prefers the technology

whose flow payoffs are received earlier. This equilibrium bias towards technolo-

gies with greater present payoffs is called the impatience property. Third, we

prove that the bias embedded in the impatience property favors the adoption of

technologies with smaller social value but flow payoffs that are delivered earlier
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in time.

The relevance of disruption costs in the introduction of products and pro-

cesses is well-known in the management literature. Tyre and Hauptman (1992)

list among their main causes the novelty of technical features, the low applica-

bility of previous knowledge, and the incompatibility of current organizational

practices with the arriving innovation.1 Leonard-Barton (1988) shows that the

adaptation of a technology often requires active cooperation between users and

developers. Our model accommodates some of these features. Disruption costs

may come not only from higher production costs but also from a lower valuation

of the new good. In this case, trade between the buyers and the adopting firm

improves the product, becoming a form of ‘cooperation.’

Holmes, Levine, and Schmitz (2012) also study adoption in the presence of

switchover disruptions. Their article contains an excellent discussion of the im-

portance of disruption costs in a number of innovation episodes. Using an Arrow-

type model, they show that a more competitive environment favors adoption as the

cost of adopting a technology is the forgone profits during the disruption period.2

Our insight is different as we stress that disruption costs open a future profit op-

portunity to competing firms. In an extension of our model, we also prove that, for

some parameter values, adding non-adopting firms promotes adoption. But while

in Holmes et al.’s article competition is beneficial because it reduces the forgone

profits of the adopting firm, in our case it is so because it diminishes the rents of

non-adopters.

In the industrial organization literature, dynamic price competition and learn-

ing by doing have been explored by Cabral and Riordan (1994) and, more re-

cently, by Besanko, Doraszelski, Kryukov, and Satterthwaite (2010). The goal of

1They also show that firms face significant disruption costs despite efforts in problem-solving
prior to the introduction of technologies.

2Arrow (1962) was the first to compare adoption incentives under perfect competition and
monopoly. However, in Arrow’s article and in the literature that follows, for example Gilbert and
Newbery (1982), there is neither learning or disruption costs.
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these articles is to understand how learning by doing, jointly with organizational

forgetting in Besanko et al.’s article, determines pricing and market dominance

in a duopolistic setting. Schivardi and Schneider (2008) examine a dynamic in-

vestment game with learning and disruptive adoption. Their analysis, however,

resembles a multi-stage patent race in which the adopting firm learns the potential

of a new technology in a Bayesian fashion.

Somewhat related to our work is Bergemann and Välimäki (2006), which stud-

ies the efficiency of price competition in a general dynamic framework. Our fo-

cus here is narrower and more applied. In particular, we are concerned with the

adoption of better technologies in a specific dynamic setting—one in which the

adopting firm suffers from disruption costs and the adopted technology gets better

through learning by doing.

Our work is also related to a list of macro articles in which learning and dis-

ruption costs are at the center of the stage. In perfectly competitive environments,

Chari and Hopenhayn (1991) and Parente (1994) examine adoption when the im-

plementation of a technology entails losing previously acquired knowledge. Jo-

vanovic and Nyarko (1996) add to this literature by studying the full dynamics of

technology adoption in a one-agent Bayesian model of learning by doing. Klenow

(1998) examines a firm’s decision of when to update a process technology. In con-

trast to these articles, we study adoption in a strategic setting and exploit the idea

that disruption costs are a source of future rents to non-adopters. This is the key

distinctive feature of our work.

The remainder of this article is organized as follows. Section 2 presents the

model. Sections 3 and 4 introduce some basic concepts and useful preliminary

findings. Section 5 presents our main results. Section 6 concludes. In Appendix A

we study a version of our model with an infinite number of buyers. Proofs are

collected in Appendix B.
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2. The model

We consider a quasi-linear utility economy with two sellers, denoted by i ∈ {1, 2},
and T + 1 buyers with unit demand. We write vi for the buyers’ valuation of a

purchase from seller i and ci for seller i’s unit cost. With si ≡ vi − ci > 0 we

denote the bounded flow surplus that is created when a buyer trades with seller i.

Trading takes place over time: at each date only one short-lived buyer is available

to trade with the sellers. Time is denoted by t ∈ T ≡ {0, ..., T}. Sellers discount

the future with a discount factor δ = 1.

Technologies and efficiency. For clarity and to ease the exposition, we assume

that only the first seller, seller 1, has the option of adopting a technology. For

our purpose, a technology is completely specified by a function that associates

cumulative sales up to the beginning of period t, x, with the surplus that can

be created at that date if trade occurs. Formally, s : X −→ [s, s], where X ≡
{0, ..., T} and 0 < s < s < +∞. Any technology fulfills:

s(0) ≤ s2, (A1)

s(x+ 1) ≥ s(x). (A2)

The first assumption captures the notion of switchover disruption costs: at least

the first sale made with a technology creates a weakly smaller flow surplus than

the one created by seller 2. The second inequality represents learning by doing.

We also assume that the socially efficient allocation requires the adoption of the

technology. Formally, there is a minimum number of cumulative sales q in X such

that the social value of the technology up to date q is nonnegative:

q∑
x=0

s(x)− (q + 1) max
i
{si} − ε ≥ 0, (A3)
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where ε ≥ 0 is a sunk cost incurred at adoption.3

Our aim is to understand adoption decisions for a whole class of technolo-

gies: the set S of all functions s satisfying Assumptions A1–A3. Note that, for

efficiency, every technology in S should be adopted at the initial date and trade

should take place at each date using the adopted technology.4

Actions and payoffs. Adoption occurs within the framework of the following

extensive-form game: At the beginning of each date, seller 1 decides whether or

not to replace the old technology s1 with a given s in S. The choice is irreversible.

Then, the sellers simultaneously announce their (flow) surplus offers to the buyer:

bi ≡ vi − pi, where pi is seller i’s price.5 The buyer then decides whether or not

to buy from one of the sellers. The game continues this way until the last date is

reached. The sellers have complete information about the history of the game.

Payoffs are as follows: Each buyer obtains either a zero payoff if trade does

not take place or a payoff equal to bi, the surplus offered by his trading partner.

Seller i, at date t, receives a payoff either equal to zero if he does not trade, or

equal to si − bi if he trades. For the sellers, total payoffs equal the sum of their

flow payoffs.

Example 1. Let T = 1, v1 = v2 = 1, and c1 = c2 = 0.5. Suppose that the

technology lets seller 1 produce a second unit at 0.1 after producing the first at

0.75. If seller 2 trades with the first buyer, the cost of seller 1 would still be 0.75

in the second period. In this case, seller 2 makes a profit of 0.75 − 0.5 = 0.25

in the second period, which, moving backwards, leaves him willing to sell at any

price p2 ≥ 0.25 in the first period. On the other hand, seller 1 makes at most
3With quasi-linearity and no lower bound in the supply of the money good an allocation is

Pareto optimal if, and only if, it maximizes the sum of utilities. Assuming that there is a q in X
such that the social value of the technology up to date q is nonnegative is the same as saying that
the sum of all individual utilities is weakly higher with adoption than without it.

4In our economy, with infinitely inelastic demand curves, there is no room for static trade
distortions. Hence, even if learning stops after seller 1 achieves q sales, allocative efficiency
requires assigning all buyers to him.

5For tractability, we focus directly on surplus/money offers rather than on prices.
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0.5− 0.1 = 0.4 in the second period if he trades with the first buyer. This means

he has to charge p1 ≥ 0.35 for the first unit. We conclude that seller 2 sells to both

buyers upon adoption and, consequently, there is no adoption for any ε > 0.

Strategies and equilibrium. We describe here the strategies and the equilibrium

concept for the sub-game that follows once a technology is adopted. Extending

these to the entire game is straightforward but tedious. Besides, it would bring

information of little use. As solution concept we use pure-strategy Markov perfect

equilibrium (MPE for short) with x as the state variable. A state x in X is feasible

if, for any t in T, 0 ≤ x ≤ t. The history of the game at the beginning of

date t, ht, is the sequence of actions chosen by buyers and sellers before date

t. Let Ht be the set of all possible histories at the beginning of date t and H ≡
∪t∈THt the set of all possible histories of the game with typical element h. A pure

strategy for seller i is a real-valued function bi(·) : H → R. A strategy bi(·) is

Markov if for each feasible state x and histories h, h′ ∈ H of the same length,

then bi(h, x) = bi(h
′, x). In words, two different histories leading to the same x

may only influence the behavior of the sellers through the date, t, at which x is

attained. A Markov strategy for seller i is written as bi(x, t) and, for short, we

call the pair (x, t), with x feasible, a state. A Markov perfect equilibrium is a sub-

game perfect equilibrium in which the sellers use Markov strategies (see Maskin

and Tirole, 2001).

3. Definitions

The functions we introduce here play a key role in our equilibrium analysis. We

begin by displaying the incremental flow surplus, at each state (x, t), for a generic

technology s adopted at t′ ≤ t. As the incremental flow surplus that s yields at

(x, t) is independent of t, we denote it by π(x) ≡ s(x) − s2. Note that |π(x)|
equals the Nash equilibrium payoff that seller 1 (seller 2) would obtain in a one-
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shot Bertrand game if π(x) > 0 (π(x) < 0).6 Observe also that Assumption

A2 implies that π(x) is non-decreasing in x. We arrange these quantities in the

triangular array A:

π(T )

π(T − 1) π(T − 1)

Sales
...

... . . .

π(1) π(1) . . . π(1)

π(0) π(0) . . . π(0) π(0).

Time

where rows count cumulative sales and columns count periods (both running back-

wards). For any state (x, t), Ax,t is the triangular sub-array whose last entry is in

row T + 1− x and column T + 1− t.

Definition 1 (d, r, and z). Define functions d, r, and z on {(x, t) ∈ X× T : x ≤
t} as follows: For any state (x, t), let d(x, t) be the summation over the (outer)

diagonal of Ax,t, let r(x, t) be the negative of the summation over the last row of

Ax,t, and let z(x, t) be the sum of all entries of Ax,t.

The incremental surplus d(x, t) can be written as:

d(x, t) =
T−t∑
k=0

[s(x+ k)−max
i
{si}] +K(t),

where K(t) ≡ (T + 1 − t)(maxi{si} − s2) is the equilibrium (continuation)

payoff of the first seller without adoption.7 (In what follows, let K be seller 1’s

reservation payoff at t = 0, K(0), to lighten the notation.)

Two observations are in order. First, Assumption A3 implies d(0, 0)− ε ≥ K,

yet d(x, t) may be either smaller than K(t) or even negative if the remaining
6In this equilibrium sellers do not use weakly dominated strategies.
7The payoff in the Nash equilibrium in which both sellers offer min{s1, s2} at each date.
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buyers cannot accommodate q sales. As a result, function z may take positive as

well as negative values. Second, function z displays a sign preserving property:

if z(x, t) is positive then z(x + 1, t + 1) is also positive. Similarly, if z(x, t) is

negative so is z(x, t+ 1).

The triangular array of Example 1 is

0.4

−0.25 −0.25,
(1)

which has d(0, 0) = 0.15, r(0, 0) = 0.5, and z(0, 0) = −0.1.

4. Preliminary results

We begin this section by studying the dynamic competition sub-game that fol-

lows once a technology is adopted. We proceed then to characterize the adoption

decision.

Lemma 1. In a MPE, b1(x, t) = b2(x, t) ≥ 0.

Lemma 1 says two things. First, that in a MPE trade takes place at each date.

Trade would not happen only if the maximum surplus offered to the corresponding

buyer were negative. But then, as the flow surplus of each seller is bounded away

from zero, a seller could deviate profitably and sell. Second, that in a MPE the

buyer must be indifferent between the two offers; otherwise, the active seller could

decrease the surplus he concedes to the buyer and increase his payoff.

In what follows, we focus attention on cautious MPE. In a cautious MPE (to

ease notation, still MPE), the non-trading seller must be, at each state, indifferent

between selling or not to the current buyer (see Bergemann and Välimäki, 2006,

for a definition). Under this equilibrium concept seller 2 trades at p2 = 0.35

with the first buyer in Example 1. Recalling that for a real-valued function f ,

f+(a) ≡ max{f(a), 0} and f−(a) ≡ −min{f(a), 0}, we give:
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Theorem 1 (Equilibrium payoffs). There is a unique MPE. In this equilibrium the

payoffs of the sellers are:

π1(x, t) = min {d+(x, t), z+(x, t)}, (2)

π2(x, t) = min {r+(x, t), z−(x, t)}. (3)

Theorem 1 provides an algorithm that resolves the intricacies of the dynamic

competition game in a simple way. In particular, it shows that, for any state (x, t),

it suffices to sum all flow surpluses in the corresponding triangular sub-array, i.e.

to compute z(x, t), to single out the trading seller. For example, from the triangu-

lar array (1) of Example 1 we get π1(0, 0) = 0 and π2(0, 0) = 0.1, meaning that

seller 2 sells both units upon adoption (see Corollary 1 below).

The following observations throw light on the result. First, each seller obtains

a non-negative payoff since he can always offer nothing. Thus, when the payoff

of a seller is positive, his rival’s payoff must be zero. For example, if z+(x, t) =

z(x, t), then π2(x, t) = z−(x, t) = 0. Second, payoffs are sign monotone: if

π1(x, t) is positive, then π1(x + 1, t + 1) is also positive. Similarly, if π2(x, t)

is positive so is π2(x, t + 1). This property is inherited directly from the sign

preserving property of function z. We further interpret and use these implications

below.

Corollary 1 (Monotonicity). In the unique MPE, if a seller sells at date t, then he

makes all subsequent sales.

One way to get intuition on Corollary 1 is to note that for any technology

there is a minimal x̂ ≤ q such that s(x) ≥ s2 for all x ≥ x̂. If x ≥ x̂, the result

is obvious. The cases in which cumulative sales have not yet attained threshold x̂

are more involved, but, in essence, a seller will sell at date t only if he obtains a

positive payoff. Then, as payoffs are sign monotone, his payoff from selling the

next date will also be positive. Corollary 1 and Theorem 1 together yield:
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Lemma 2 (No delay). For the unique MPE, adoption takes place only at the initial

date.

Lemma 2 says that adoption takes place without delay. The intuition is simple.

When adoption occurs, the first seller, independently of the selected adoption date,

receives full compensation of his reservation payoff. Hence, he does not get any

benefit, and indeed loses money, from delaying adoption because the number of

profitable trades may only diminish. This is particularly clear in Example 1, where

missing the first sale makes the technology inefficient.

Corollary 1 and Lemma 2 have two important implications. First, adopted

technologies attain their maximum social value. Second, the maximum adoption

payoff is π1(0, 0)− ε. Therefore, the MPE is efficient if, and only if, the set S∗ of

technologies adopted in equilibrium fulfills:

S∗ = S.

Equivalently, the MPE is efficient if, and only if, π1(0, 0) − ε ≥ K for every

technology in S. Our next result identifies a sufficient condition for efficiency.8

Proposition 1 (Efficient adoption). With zero switchover disruption costs, the

unique MPE is efficient.

Without switchover disruption costs, efficiency ensues because the first seller

gets, at least, the social value of the technology (i.e. equation (A3) with q = T ).

Formally, all entries in the triangular array A are non-negative without switchover

disruption costs and, as a result, z(0, 0) ≥ d(0, 0) ≥ ε + K. Theorem 1 implies

then that π1(0, 0) = d(0, 0) for every technology in S.

To fully appropriate the incremental surplus of the technology, the first seller

must obtain, at each date t, a flow payoff equal to s(t)−s2. That is, the maximum

8To ease the exposition, in what follows, we abuse our terminology and refer directly to the
efficiency properties of the MPE.
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surplus that seller 2 offers to the buyer must equal his flow surplus at each date.

This ‘bidding’ behavior reflects the fact that, without switchover disruption costs,

the continuation payoff of seller 2 is always zero as he cannot gain any market

power.

5. Main results

This section contains our key findings. They come in three groups. First, we show

that some efficient technologies are not adopted. Second, we describe the most

distinctive features of these technologies. Third, we study the effect of adding

more sellers.

5.A. Adoption breakdowns

To ease the exposition, we define the subset N of technologies as:

N ≡ {s ∈ S : z(0, 0) < ε+K}.

Clearly, set N is non-empty and is contained in S (see Figure 1). Our first key

result generalizes the outcome of Example 1:

Proposition 2 (Adoption breakdown). The unique MPE is inefficient:

S∗ = S− N.

Proposition 2 says that technologies in set N are not adopted. That is, the

maximum adoption payoff π1(0, 0) − ε is smaller than the reservation payoff for

every technology s in N. Note that this is true even in the extreme case of a zero

sunk cost, i.e. if ε is zero.

Our game is not a mere sequence of independent one-shot Bertrand games

because a sale made by seller 1 improves his strategic position against seller 2
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Figure 1: Sets N and S − N of technologies with non-negative costs in Example 1, if
ε = 0.

and vice versa. Both sellers are, in principle, willing to offer more than the flow

surplus to the current buyer. How much do they offer depends, of course, on the

return they expect from the improved strategic position. In our cautious equilib-

rium this means that the trading seller offers precisely his rival’s valuation of an

extra sale. The following proposition is meant to clarify this point and thus to

improve our understanding of Proposition 2.

Proposition 3 (Recursive payoffs). In the unique MPE, payoffs obtain recursively

from:

π1(x, t) = max

d(x, t)−
T−(t+1)∑
k=0

π2(x+ k, t+ 1 + k), 0

 ,

π2(x, t) = max

r(x, t)−
T−(t+1)∑
k=0

π1(x+ 1, t+ 1 + k), 0

 ,
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where πi(·, T ) = max {(−1)i−1π(·), 0} for i ∈ {1, 2}.

Corollary 1 and Lemma 2 tell us we may observe one of two possible paths in

equilibrium. Suppose that seller 1 adopts the technology—and sells at each date.

Function d(t, t) (from T to R) gives the payoff of seller 1 if seller 2 plays at each

date his one-shot Bertrand best response, i.e. if he offers at each date a surplus

equal to s2. Function d(t, t) is thus an upper bound for the equilibrium payoff of

seller 1. At each date, however, seller 2 may be tempted to deviate by offering

more than s2 to the current buyer. In fact, he would be willing to offer, at most:

u(t, t) ≡ s2 + π2(t, t+ 1). (4)

That is, he would be willing to offer not only the buyer’s intrinsic alternative social

value, s2, but also the continuation payoff he would earn from deviating at date t.

Proposition 3 says that seller 1 must transfer to each buyer t in T a surplus equal

to u(t, t) to preclude deviations from the equilibrium path.

Therefore, the payoff function of seller 1 is just the incremental surplus of

the technology minus the sum of the money payments he must transfer to the

buyers to prevent deviations from the equilibrium path. If the total amount to be

transferred is greater than the maximum appropriable rents, then the technology

is not adopted—and the payoff from the dynamic competition game is zero for

the first seller. A parallel argument explains the second equation in Proposition 3,

i.e. the payoff function of the second seller. In particular, in Example 1 seller

1 must transfer u(0, 0) = 0.5 + 0.25 to seller 2 to preclude a deviation in the

first period. Still, he can transfer only s(0) + π1(1, 1) = 0.25 + 0.4. Following

Proposition 3, the payoff of seller 2 in the first period may thus be written as

π2(0, 0) = max{0.5− 0.4, 0}.
Less formally, as ‘stealing’ buyers from the first seller prevents the learning

of the technology and improves the future market position of seller 2, buyers be-

come an artificially overpriced ‘commodity’ in the market. Indeed, the mechanics
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of the equilibrium resemble the workings of a second price auction in which, to

move forward in his preferred direction, seller 1 must transfer to each buyer a flow

surplus equal to the valuation u(t, t) of his rival. It is ultimately this social over-

pricing of buyers what renders the adoption of better technologies unprofitable.

This also clarifies a key conceptual point. The root of the adoption failure is

not the resistance of potential losers, but the market gains that non-adopters could

obtain after adoption takes place. This is further highlighted in the next remark.

Remark 1. The adoption of a new technology may let seller 2 appropriate rents he

could not appropriate otherwise. Consider Example 1. Following adoption, the

second seller earns a payoff of 0.1, yet he makes zero profits without adoption.

With zero sunk costs, this implies a transfer of wealth to seller 2, who benefits

from the new situation without adding any social value. Moving one step back-

wards, we see these new rents constitute a form of resistance to adoption.

5.B. Endogenous impatience

The previous results lead us to question how can we tell adopted from non-adopted

technologies apart. One might think that the distinctive feature of adopted tech-

nologies is a large social value. And although, as we shall see, this is not true in

general, technologies with a sufficiently high social value are adopted. Formally,

define the subset G of technologies as:

G ≡ {s ∈ S : d(0, 0) ≥ (ε+K) +Ms},

where Ms ≡ 1
2
T (T + 1)|π(0)|. (Set G is the triangle above the dashed line in

Figure 1.) Then, we have the following result:

Proposition 4. In the unique MPE, every technology in set G is adopted.

For technologies outside G the social value rule is insufficient to decide whether

adoption takes place. In particular, the inter-temporal distribution of the social

15



value becomes crucial because technologies with larger early flow surpluses give

higher adoption payoffs.

Example 2. Let ε = 0 and consider two technologies, s and s′, with triangular

arrays:

1.25

0.75 0.75

−0.75 −0.75 −0.75,

2

0 0

−0.75 −0.75 −0.75.

Although both technologies have the same incremental surplus d(0, 0) = d′(0, 0)

and switchover disruption costs π(0) = π′(0), it follows from Theorem 1 that

π1(0, 0) = 0.5, whereas π′1(0, 0) = 0.

To convey this idea formally we use a few more concepts. First, we say that

technologies s and s′ are surplus equivalent if, and only if, they have equal incre-

mental surpluses. We denote by [s] the equivalence class of technology s, that is,

[s] ≡ {s′ ∈ S : d′(0, 0) = d(0, 0)}. Second, consider any technology s′ in [s] such

that π(0) = π′(0). We say that s is learned faster than s′ during k sales if there is

an x ∈ X such that π(x) ≥ π′(x), π(x+ 1) ≥ π′(x+ 1),...,π(x+ k) ≥ π′(x+ k),

with at least one strict inequality. Finally, we say that s is learned earlier than s′,

s � s′, if s is learned faster than s′ during the first k sales and s′ is learned faster

than s during the remaining T − k sales. Geometrically, s � s′ if technology s′

crosses technology s at most once from below (see Figure 2).9

Proposition 5 (The impatience property). Let s � s′. Then, seller 1’s payoff

π1(0, 0) with technology s is weakly higher than his payoff π′1(0, 0) with technol-

ogy s′.

The result shows that the total money payments that seller 1 must transfer to

the buyers diminish as the technology is learned earlier. The proposition general-

izes the following intuition.
9Ignoring the point (0, π(0)).
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Figure 2: Two surplus equivalent technologies: technology s′ (red) yields zero profits;
technology s (black) is learned earlier and yields a positive payoff.

Consider a technology and perturb it by shifting a unit of surplus from the last

date to date one. The cost of this perturbation is to reduce the last date surplus in a

unit—a static cost of one unit. The benefit is, however, twofold. First, it increases

the date one surplus in a unit. This static benefit just compensates the static cost,

leaving the social value of the perturbed technology unchanged. Second, and key

to the result, it (weakly) decreases the money payment that seller 1 must transfer

to the date-1 buyer. This dynamic benefit ensues because, as seller 1 becomes

more efficient at date one, the continuation payoff that seller 2 would earn from

selling to the date-1 buyer diminishes.

There is indeed a more general illustration of the impatience embedded in

equilibrium payoffs, though less clear-cut than the impatience property. The idea

comes from understanding function z as a discounted sum of flow profits. For this

purpose we write:
1

T + 1
z(0, 0) =

T∑
t=0

δt π(t), (5)

where δt ≡ 1− (T + 1)−1t is read as an endogenously determined discount factor.

The rule says that a technology is adopted only if the discounted value in (5) is
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weakly higher thanK+ε. However, efficiency is measured by the non-discounted

sum of flow profits (A3). As we have seen, this endogenous discounting has

two consequences: first, a positive social value is not enough for adoption; sec-

ond, technologies whose payoffs are received earlier have more chances of being

adopted. These are neatly exemplified in Figure 1, where equivalence classes [s]

are parallel straight lines of slope−1. There, all classes below the dashed line can

be partitioned into two convex subsets of adopted, and not adopted, technologies.

A third consequence can be glimpsed from Proposition 5:

Proposition 6 (Inefficient choice). For any technology s in N with positive social

value, there is another technology s′ in S∗ with a smaller social value.

The result shows that, if the first seller could choose between technologies,

the present bias embedded in the impatience property may favor the adoption of

technologies with smaller but ‘better’ inter-temporally distributed social value.

5.C. Adding more sellers

In this subsection we add a third seller to our model, but the reader shall be con-

vinced that adding two or more sellers is straightforward. To be sure we make

legitimate comparisons across models, we keep the set S of technologies fixed.

For this purpose, recall that a third seller with flow surplus s3 fulfills Assump-

tions A1 and A3 for all s in S if, and only if, s2 ≤ s3 ≤ maxi{si}. Therefore,

adding a third seller that fulfills these two inequalities leaves the reference set S

of technologies unchanged.

We distinguish among two possible cases: s3 = s2, which always occurs if

s1 ≤ s2, and s2 < s3 ≤ s1. In the first case, neither seller 2 or seller 3 make profits

in equilibrium because any strategy granting a positive payoff to one of them can

be replicated by the other. In particular, note that none of them offers less than his

flow surplus for states (x, t) with x̂ − x > T − t, which eliminates any incentive
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to offer more than just the flow surplus at earlier states. As a consequence, all

technologies in S are adopted if s2 = s3.

In the second case seller 3 is more efficient than seller 2. This means that the

second seller never sells in equilibrium, since seller 3 can bid higher for every

buyer. In fact, seller 1 can be seen, without any loss of generality, as competing

solely against seller 3 in this case.

There are two opposite effects in action when s2 < s3. The first effect is

that seller 1 now faces a more efficient rival that might, in principle, bid more

aggressively for the buyers. This is the predatory effect of competition which

clearly hinders adoption. The second effect, which eases adoption, is that the

amount seller 3 needs to offer to any buyer is now bounded below by s2 (and

s2 ≥ s(x) for x < x̂). This is the protective effect of competition that appears

because, in equilibrium, seller 2 always offers his flow surplus. It turns out that

which effect prevails depends on the magnitude of s3: if s3 is close to s2 we

approach the case s3 = s2 in which the protective effect dominates; as s3 goes up

the predatory effect gains importance.

The model with three sellers may be solved as a model with just two sellers,

sellers 1 and 3, after updating the value function of seller 3 to:

π3(x, t) = max{s3 −max{b̄1(x, t), s2}+ π3(x, t+ 1), π3(x+ 1, t+ 1)}.

This expression simply takes into account that seller 3 now pays, at least, seller 2’s

bid—and not just the maximum bid of seller 1, b̄1(x, t). Unfortunately, this model

is not symmetric and there is no neat characterization as Theorem 1’s in this case.

However, we may make good use of the machinery developed above and consider

an auxiliary model with a fictitious technology ṡ(x) ≡ max{s(x), s2} for seller 1.

A seller equipped with this technology never bids less than max{b̄1(x, t), s2}, and

so his payoff π̇1 is an upper bound for seller 1’s payoff. Proposition 7 formalizes

our previous discussion.
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Proposition 7 (The value of extra sellers). Fix a pair of flow surpluses fulfilling

s2 < s1, a technology s in S, and add a third seller with flow surplus s3 in [s2, s1].

Then:

i. If π1(0, 0) < d(0, 0), there is a threshold s†3 in (s2, s1] such that seller 1’s

payoff goes up for all s3 < s†3.

ii. If s1 − s2 > s2 − s(0), there is a threshold s∗3 in (s2, s1) such that seller 1’s

payoff goes down for all s3 > s∗3.

Part ii of the proposition says that the predatory effect prevails if s3 is large

with respect to s2 but also s2 is close to s(0). We should recall that adoption is

easier the lower is the disruption cost |π(0)| = s2 − s(0) in the first place.

If we add a third seller in Example 1. . .

6. Conclusion

We have presented a dynamic model of technology adoption based on the idea

that adoption creates socially spurious rents to non-adopters. Within this frame-

work, we have shown that adoption breakdowns may come as a consequence of

disruption costs and learning by doing. We have been able to characterize the tech-

nologies most prone to experience adoption failures, i.e. technologies with slow

learning curves. As a corollary, we have shown that firms may prefer adopting in-

ferior technologies if these can be learned faster. We have assessed the impact of

adding more sellers obtaining mixed results. Nonetheless, we defend that a mar-

ket in which sellers are closer substitutes of each other is more competitive and,

under this view, our results show that competition has a positive value (Makowski

and Ostroy, 2001). Summing up, our results should warn regulators of keeping an

eye on industries with either little competition or where technological improve-

ments take longer to settle. In our view, these are the industries in which adoption

failures seem most likely to happen.
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Our results generalize straightforwardly in a number of directions. In Ap-

pendix A we consider a model with infinitely many buyers. The discount factor δ

may be any number within the interval (0, 1). We may consider exogenous tech-

nological change by simply letting function s depend on time as well as on accu-

mulated sales. Likewise, old technologies could be subject to exogenous progress.

Finally, the case in which both sellers may adopt a technology can also be treated.

Other generalizations require significant departures from our setup. Among

these, introducing randomness is perhaps the most natural. We leaned in Corol-

lary 1 that adopted technologies never fail. This feature of our model arises be-

cause learning curves are known with certainty. A model in which learning fluc-

tuates randomly can easily incorporate the failure of adopted technologies.
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A. Large numbers of buyers

In this appendix we study markets with a large number of buyers. Our approach

is to construct a continuous-time version of the model in which sales take place

at the beginning of each of T + 1 periods of length ∆ ≡ (T + 1)−1. We then

let the number of buyers grow without bound and characterize the limit of the

corresponding sequence of equilibria.

Define the following surplus function on the unit interval:

πT (x) ≡
T∑
k=0

π(k)1[∆k,∆(k+1))(x), (6)

for x in [0, 1), and πT (1) ≡ π(T ). The interpretation is that πT (∆k) (k =

0, . . . , T.) is the incremental flow surplus in state (k, t) ∈ X × {0, . . . ,∆T} in

a version of the model in which time runs in discrete steps of size ∆. From here

it is straightforward to build a continuous-time version of the model with state-

space {(x, t) ∈ [0, 1]2 : x ≤ t} in which a sale of size ∆ is made at each date

tk = ∆k (k = 0, . . . , T.) to a buyer of life span [tk, tk+1). (Nothing happens

when tk < t < tk+1.) We shall consider sequences of such continuous-time

economies—with an increasing number of buyers.

Definition 2 (dT , rT , and zT ). Define functions dT , rT , and zT on {(x, t) ∈

23



[0, 1]2 : x ≤ t} as:

dT (x, t) ≡
∫ 1−t

0

πT (x+ y) dy,

rT (x, t) ≡ (1− t)πT (x),

zT (x, t) ≡
∫ 1−t

0

[1− (t+ y)]πT (x+ y) dy.

Functions dT and rT are continuous-time analogs of functions d and r in Defi-

nition 1, while zT is a scaled-down analog of function z. Let {πT}, T = 1, 2, . . . ,

be a sequence of surplus functions that converges pointwise to some function π∞

on the unit interval. Define functions d∞, r∞, and z∞ as the (pointwise) limits

of functions dT , rT , and zT as T goes to +∞.10 The next proposition character-

izes the limit of the sequence of equilibria that corresponds to the sequence {πT},
T = 1, 2 . . . , of surplus functions. Furthermore, it shows that, in the limit, there

is no adoption without seller 1 fully appropriating the incremental surplus of the

technology.

Proposition 8 (Large numbers payoffs). Consider the continuous-time model out-

lined above and let {πT}, T = 1, 2, . . . , be a sequence of surplus functions con-

verging pointwise to π∞. Then, as T goes to +∞, the payoffs of the sellers con-

verge to:

π∞1 (x, t) =

{
d∞(x, t) if z∞(x, t) > 0

0 otherwise
,

π∞2 (x, t) =

{
r∞(x, t) if z∞(x, t) < 0

0 otherwise
.

Both adoption breakdowns and the impatience property are neatly illustrated

10Because |π| ≤ s, the limits exist by the Bounded Convergence Theorem (Royden, 1988).
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in our large-numbers model. Let us write down function z∞ at the initial state as:

z∞(0, 0) = d∞(0, 0)−
∫ 1

0

x π∞(x) dx. (7)

Since the sign of z∞(0, 0) decides whether a technology is adopted in equilibrium,

we see in (7) that a positive incremental surplus, d∞(0, 0) > 0, is insufficient for

adoption to take place. Likewise, suppose we are given two surplus equivalent

technologies such that one is learned earlier than the other. Since the future is

weighted heavier inside the integral and π∞ is increasing, the technology which

is learned earlier must have a higher z∞(0, 0).

In the limit, our continuous-time model approximates arbitrarily well an econ-

omy with a continuum of buyers distributed uniformly on the unit interval. In such

economy, a technology is characterized by a non-decreasing function σ : [0, 1]→
[s, s] that fulfills σ(0) ≤ s2 and

∫ q
0
σ(x) dx ≥ qmaxi{si}+ ε for some q in (0, 1].

Function σ is the counterpart of function s, and gives the instantaneous flow sur-

plus of the technology. The interpretation is that a new buyer shows up at each

instant in the unit interval, though a share q of the market is needed for efficiency.

The model generalizes in the obvious way to any interval T = [0, T ] (with T in

R++). A parametric example should help to fix the idea.

Example 3. Consider Example 1 with T = [0, 1] and ε = 0. Suppose that the

technology lets seller 1 produce at a cost c(x) = αx−β , with α in (0, 0.5] and β in

[0, 1).11 (The power rule is the most common specification in empirical research;

see Thompson 2010.) Let us be more specific and consider only technologies with

total cost
∫ 1

0
c(x) dx = 0.375, which is the unitary cost of the technology in Ex-

ample 1. This implies the parametric relation α = 0.375(1−β). A straightforward

11Function c requires s = −∞. This poses no technical problem because β < 1 ensures the
convergence of the integral.
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computation gives:

z∞(0, 0) =

∫ 1

0

(1− x)[c2 − c(x)] dx =
0.125− 0.25β

2− β
.

Therefore, technologies with β < 0.5 are adopted, whereas technologies with

β > 0.5 are not. If β < 0.5 the first seller makes a profit of 0.125. Equilibrium

prices are always constant and equal to 0.5. Note, also, that the equilibrium is the

same as if seller 1 had c(x) = 0.375 if β < 0.5, and c(x) = c1 if β ≥ 0.5.

Our main results thus extend to a model with infinitely many buyers. The

innovation is that we do no longer have predatory pricing in equilibrium: In the

limit each buyer has a perfect substitute—who shows up an instant after him—

and, for this reason, sellers do not need to undercut prices to win any particular

sale.

B. Proofs

Proof of Lemma 1

The best response of a generic buyer is to buy from the seller who offers the

highest non-negative surplus and not to buy otherwise. For notational ease, let

us assume that seller 1 is the trading seller at state (x, t). Also, let us assume,

momentarily, that trade happens at state (x, t). If the equality were not satisfied,

seller 1 could decrease b1(x, t) by an infinitesimal amount and the buyer would

still buy from him. Now we show that trade happens at state (x, t). Suppose not.

Then, the highest flow surplus offered by the sellers must be negative. But as s(·)
and s2 are bounded away from zero, seller i can offer a surplus 0 < bi(x, t) < si

that is accepted by the buyer and gives him a strictly positive flow payoff.
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Auxiliary results

The following intermediate lemmas are useful to prove Theorem 1. Recall that:

x̂ ≡ min{x ∈ X : s(x) ≥ s2}.

Also, note that:

z(x, t) =
T−t∑
k=0

d(x, t+ k), (8)

= −
T−t∑
k=0

r(x+ k, t+ k). (9)

Lemma A. If z(x, t) ≥ 0, then: (a1) d(x, t) ≥ 0, (b1) z(x, t + 1) ≤ z(x, t),

and: (c1) z(x + 1, t + 1) ≥ 0. If z(x, t) ≤ 0, then: (a2) r(x, t) ≥ 0, (b2)

z(x+ 1, t+ 1) ≥ z(x, t), and: (c2) z(x, t+ 1) ≤ 0.

Proof. (a1): If z(x, t) ≥ 0, then d(x, t) is the largest summand in (8) because

d(x, t+ k) decreases with k. (b1): Since, from (8), z(x, t+ 1) = z(x, t)− d(x, t),

(a1) implies (b1). (c1): From (9), z(x+1, t+1) = z(x, t)+r(x, t). If x ≤ x̂, then,

as π(x) ≤ 0, r(x, t) ≥ 0 which gives the result. If x > x̂, then z(x+ 1, t+ 1) > 0

since it is equal to a negative sum of negative values of r. (a2): If z(x, t) ≤ 0,

then r(x, t) is the largest summand in (9) because r(x, t) is decreasing in t and

non-increasing in x. (b2) As in (c1), from (9), z(x + 1, t + 1) = z(x, t) + r(x, t)

and thus (a2) implies (b2). (c2) It follows from (8), as d(x, t + k) decreases with

k.

Lemma B. Functions d, r, and z fulfill:

d. If z(x+1, t+1) ≤ 0, then 0 ≤ r(x, t+1) ≤ −z(x, t+1) and 0 ≤ r(x, t) ≤
−z(x, t).
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e. If z(x, t + 1) ≥ 0, then 0 ≤ d(x + 1, t + 1) ≤ z(x + 1, t + 1) and 0 ≤
d(x, t) ≤ z(x, t).

f. If z(x, t+ 1) ≤ 0 and z(x+ 1, t+ 1) ≥ 0, then either:

f1. z(x+ 1, t+ 2) ≥ 0 and −z(x, t+ 1) ≤ r(x, t+ 1), or:

f2. z(x+ 1, t+ 2) ≤ 0 and z(x+ 1, t+ 1) ≤ d(x+ 1, t+ 1).

Proof. The proof repeatedly uses the results from Lemma A.

(d): If z(x + 1, t + 1) ≤ 0 then, z(x + 1, t + 2) ≤ 0 by (c2). Hence, by (c1),

z(x, t+1) ≤ 0. This, in turn, implies that r(x, t+1) ≥ 0 by (a2). Since, from (9),

z(x, t+1) = z(x+1, t+2)−r(x, t+1), we have the first part of d. For the second

part, note that, by (c1), z(x, t) ≤ 0, which, by (a2), implies that r(x, t) ≥ 0. Since

by (9), z(x, t) = z(x+ 1, t+ 1)− r(x, t), we have the second part of d.

(e): If z(x, t + 1) ≥ 0 then, d(x, t + 1) ≥ 0 by (a1) and z(x + 1, t + 2) ≥ 0

by (c1). Also, as s(·) is non-decreasing in x, d(x+ 1, t+ 1) ≥ 0. Since, from (8),

z(x+ 1, t+ 2) = z(x+ 1, t+ 1)− d(x+ 1, t+ 1), we already have the first part

of e. For the second part, note that, by (c2), z(x, t) ≥ 0, which, by (a1), implies

that d(x, t) ≥ 0. Since, by (8), z(x, t+ 1) = z(x, t)− d(x, t), we have the second

part of e.

(f1): z(x, t + 1) ≤ 0 implies, by (a2), that r(x, t + 1) ≥ 0. Since, by (9),

z(x, t+ 1) = z(x+ 1, t+ 2)− r(x, t+ 1), we have f1.

(f2): z(x + 1, t + 1) ≥ 0 implies, by (a1), that d(x+, t + 1) ≥ 0. Since, by

(8), z(x+ 1, t+ 1) = d(x+ 1, t+ 1) + z(x+ 1, t+ 2), we have the result.

We use throughout the following concepts. The value functions of the sellers

are:

π1(x, t) = max{s(x)− b̄2(x, t) + π1(x+ 1, t+ 1), π1(x, t+ 1)},

π2(x, t) = max{s2 − b̄1(x, t) + π2(x, t+ 1), π2(x+ 1, t+ 1)}.
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With b̄i(x, t), i = 1, 2., we denote the maximum bidding function, i.e. the surplus

Seller i is willing to transfer to the buyer at state (x, t):

b̄1(x, t) = s(x) + π1(x+ 1, t+ 1)− π1(x, t+ 1), (10)

b̄2(x, t) = s2 + π2(x, t+ 1)− π2(x+ 1, t+ 1). (11)

(Seller 1 sells at (x, t) if b̄1(x, t) = b̄2(x, t).)

Proof of Theorem 1

The proof is by backwards induction. Let t = T . The result is then obvious for

the T +1 triangular sub-arraysAx,t for x ∈ X, i.e. terminal states of the form (·, t)
for which d(·, t) = −r(·, t) = z(·, t) = s(·) − s2. Using the maximum bidding

functions, payoffs, at any non-terminal state (x, t), in a MPE are:

π1(x, t) = max {s(x)− s2 + π1(x+ 1, t+ 1) + π2(x+ 1, t+ 1)− π2(x, t+ 1),

π1(x, t+ 1)}, (12)

π2(x, t) = max {s2 − s(x) + π2(x, t+ 1) + π1(x, t+ 1)− π1(x+ 1, t+ 1),

π2(x+ 1, t+ 1)}. (13)

Let us now consider a generic time period t. We prove that the result is true for the

t+1 triangular sub-arrays Ax,t for x ∈ {0, ..., t} if it is true for the t+2 triangular

sub-arrays Ax,t+1, the induction hypothesis.

(a): If z(x+ 1, t+ 1) ≤ 0, we know from (d) in Lemma B, equations (2) and

(3) that π1(x + 1, t + 1) = π1(x, t + 1) = 0 and that π2(x, t + 1) = r(x, t + 1).

On the other hand, we have, by (a2) in Lemma A, that r(x + 1, t + 1) ≥ 0. This,

in turn, implies, by definition of function r(·, ·), that π(x + 1) ≤ 0. As π(x) is

non-decreasing in x, we have that π2(x+ 1, t+ 1) ≤ r(x+ 1, t+ 1) ≤ r(x, t+ 1).
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Plugging these into (12) and (13) gives π1(x, t) = 0 and π2(x, t) = r(x, t).

(b): If z(x, t + 1) ≥ 0, we know from (e) in Lemma B, equations (2) and (3)

that π2(x, t+1) = π2(x+1, t+1) = 0 and that π1(x+1, t+1) = d(x+1, t+1).

On the other hand, we have, by (a1) in Lemma A, that d(x, t+ 1) ≥ 0. As d(x, ·)
is non-increasing in t, we have that π1(x, t+ 1) ≤ d(x, t+ 1) ≤ d(x, t). Plugging

these into (12) and (13) gives π1(x, t) = d(x, t) and π2(x, t) = 0.

(c): If z(x, t + 1) ≤ 0 and z(x + 1, t + 1) ≥ 0, equations (2) and (3) say

that π2(x + 1, t + 1) = π1(x, t + 1) = 0. Then either π1(x + 1, t + 1) = d(x +

1, t + 1), or π1(x + 1, t + 1) = z(x + 1, t + 1). Let us first regard the case

in which π1(x + 1, t + 1) = d(x + 1, t + 1). It follows then from equation (2)

that z(x + 1, t + 1) ≥ d(x + 1, t + 1) ≥ 0 and thus that z(x + 1, t + 2) ≥ 0,

since z(x + 1, t + 2) = z(x + 1, t + 1) − d(x + 1, t + 1). Hence, from (f1)

in Lemma B, we know that π2(x, t + 1) = z(x, t + 1). Plugging these into (12)

and (13) gives π1(x, t) = max{d(x, t) + z(x, t + 1), 0} = max{z(x, t), 0} and

π2(x, t) = max{−z(x, t), 0} = max{r(x, t) − z(x + 1, t + 1), 0}. A parallel

argument shows that the same result holds when π1(x+1, t+1) = z(x+1, t+1).

The previous paragraph is not valid for t = T − 1, because state (x+ 1, t+ 2)

is not feasible. [It is easy to see that this problem appears if, and only if, we are

at state (x̂ − 1, T − 1).] We have that π1(x̂ − 1, T ) = π2(x̂, T ) = 0, π1(x̂, T ) =

s(x̂) − s2, and π2(x̂ − 1, T ) = s2 − s(x̂ − 1). Plugging these into (12) and (13)

completes the proof.

Proof of Corollary 1

From Theorem 1, the result is obvious for the case in which t = T − 1 and for the

T + 1 triangular sub-arrays Ax,t for x ∈ X , i.e. terminal states of the form (·, t).

Consider now a generic non-terminal state (x, t).

(a): If z(x + 1, t + 1) ≤ 0, it follows from (a) in Theorem 1, (10) and (11)

that b̄1(x, t) = s(x) and b̄2(x, t) = s2 + [r(x, t+ 1)− π2(x+ 1, t+ 1)]. Then,

b̄1(x, t) < b̄2(x, t) since s2 ≥ s(x) and, from (a) in Theorem 1, π2(x+ 1, t+ 1) ≤
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r(x + 1, t + 1) ≤ r(x, t + 1).12 Thus, seller 2 will be the trading seller at date t.

Since the state moves to (x, t + 1) and by (c2) in Lemma A, z(x + 1, t + 2) ≤ 0,

we have the result.

(b): If z(x, t + 1) ≥ 0, it follows from (b) in Theorem 1, (10) and (11)

that b̄2(x, t) = s2 and b̄1(x, t) = s(x) + [d(x+ 1, t+ 1)− π1(x, t+ 1)]. Then,

b̄1(x, t) ≥ b̄2(x, t) since b̄1(x, t)− b̄2(x, t) = d(x, t)−π1(x, t+1) and, from (b) in

Theorem 1, π1(x, t+ 1) ≤ d(x, t+ 1) ≤ d(x, t). Thus, seller 1 will be the trading

seller at date t. Since the state moves to (x + 1, t + 1) and by (c1) in Lemma A,

z(x+ 1, t+ 2) ≥ 0, we have the result.

(c): If z(x, t+ 1) ≤ 0 and z(x+ 1, t+ 1) ≥ 0, we know from (c) in Theorem 1

that π2(x+1, t+1) = π1(x, t+1) = 0. Then either π1(x+1, t+1) = d(x+1, t+1),

or π1(x + 1, t + 1) = z(x + 1, t + 1). Let us first regard the case in which

π1(x+ 1, t+ 1) = d(x+ 1, t+ 1). It follows then from (c) in Theorem 1, (10) and

(11) that b̄1(x, t) = s(x) + d(x+ 1, t+ 1) and b̄2(x, t) = s2 + z2(x, t+ 1). Thus

b̄1(x, t)−b̄2(x, t) = d(x, t)−z(x, t+1) = z(x, t). When z(x, t) is positive, seller 1

will be the trading seller at date t. Since the state moves to (x+1, t+1) and by (c1)

in Lemma A, z(x+1, t+1) ≥ 0, we have the result. Clearly, the same result holds

when z(x, t) is negative and seller 2 is the trading seller at date t. Finally, a parallel

argument shows that the same result is true when π1(x+1, t+1) = z(x+1, t+1).

Remark 2. We will use throughout the following notation. Recall that:

d(x, t) = w(x, t) +K(t), (14)

where:

w(x, t) ≡
T−t∑
k=0

[s(x+ k)−max
i
{si}], (15)

and K(t) ≡ (T − t+ 1) [maxi{si} − s2].

12That s2 ≥ s(x) follows from π(x) ≤ 0.
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Proof of Lemma 2

If the set of adopted technologies S∗ = ∅, the result holds trivially. We assume

hereafter that S∗ is non-empty. If a technology is adopted at date t, then:

π1(0, t) ≥ K(t) + ε.

Let Π(0, t) ≡ π1(0, t) − K(t). As S∗ is non-empty, there is a date t∗ ∈ T such

that: (i) Π(0, t∗) ≥ ε; and that: (ii) Π(0, t∗) ≥ Π(0, t) ∀t ∈ T. Also, note that it

must be that π1(0, 0) ≥ 0 since π1(0, 0) ≥ π1(0, t) ∀t ∈ T, by Theorem 1.

(a): If π1(0, 0) = z(0, 0), then π1(0, t) = 0 ∀t ≥ 1, by (c) in Theorem 1.

Therefore, Π(0, t) = 0 ∀t ≥ 1, and t∗ = 0.

(b): If π1(0, 0) = d(0, 0) and if, ∀t ≥ 1, Π(0, t) is smaller than ε, the result

holds trivially. Thus, let Π(0, t) ≥ ε for at least one t ≥ 1. Then, by (14) and

Theorem 1, we have that Π(0, t) ≤ w(0, t). And as, Π(0, 0) = w(0, 0) > w(0, t)

for ∀t ≥ 1, it follows that t∗ = 0.

Proof of Proposition 1

If switchover disruption costs are zero, i.e. π(0) ≥ 0, d(x, t) ≥ 0 for every state

(x, t) and every s ∈ S. Thus, z(x, t) ≥ d(x, t) for every state (x, t) and every

s ∈ S. This, in turn, implies, from Theorem 1, that π1(x, t) = d(x, t) for every

s ∈ S. As, from (14), d(0, 0) = w(0, 0)+K, it follows that Π(0, 0) = w(0, 0) ≥ ε

for every s ∈ S by Assumption A3.

Proof of Proposition 2

Let s be an element of S∗, then π1(0, 0) ≥ K + ε. This, in turn, implies that

z(0, 0) ≥ K + ε since, from Theorem 1, π1(0, 0) = min {d(0, 0), z(0, 0)}. There-

fore, s ∈ Nc and S∗ ⊂ Nc. Conversely, let s be an element of Nc, then z(0, 0) ≥
K+ε. If π1(0, 0) = z(0, 0), then clearly s ∈ S∗. If π1(0, 0) = d(0, 0), then s ∈ S∗
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since d(0, 0) = w(0, 0) + K and w(0, 0) ≥ ε by Assumption A3. Hence, s ∈ S∗

and Nc ⊂ S∗. This completes the proof.

Proof of Proposition 3

We break the proof in two parts and several steps:

Part One (Seller 2 profits): Recall that −z(x, t) = r(x, t)− z(x+ 1, t+ 1).

Step 1: If x = x̂ − 1, then π1(x + 1, t + 1 + k) = d(x + 1, t + 1 + k) ≥ 0 for

0 ≤ k ≤ T − (t+ 1). Since:

z(x+ 1, t+ 1) =

T−(t+1)∑
k=0

d(x+ 1, t+ 1 + k),

the proof for x = x̂− 1 is complete.

Step 2: If z(x+1, t+1) < 0, we know from (d) in Lemma B and (3) that π2(x, t) =

r(x, t). By (c2) in Lemma A and (2) we know that π1(x + 1, t + 1 + k) = 0 for

0 ≤ k ≤ T − (t+ 1).

Step 3: This an auxiliary result. Suppose that z(x, t) ≥ 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x, t+ k) ≥ 0}.

Then z(x, t+ k) ≥ d(x, t+ k) ≥ 0 if k < k̂ and 0 ≤ z(x, t+ k) ≤ d(x, t+ k) if

k = k̂. Both inequalities come from the definition of k̂, the fact that z(x, t+ k) =

d(x, t+ k) + z(x, t+ k + 1) and (a1) in Lemma A.

Combining these facts with Theorem 1, we get that π1(x, t + k) is equal to

d(x, t+ k) if k < k̂, equal to z(x, t+ k̂) if k = k̂, and zero otherwise.

Step 4: If z(x+ 1, t+ 1) ≥ 0 and x < x̂− 1, we write

z(x+ 1, t+ 1) =
k̂−1∑
l=0

d(x+ 1, t+ 1 + l) + z(x+ 1, t+ 1 + k̂),
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where k̂ is the integer defined in the previous step. Combining−z(x, t) = r(x, t)−
z(x+ 1, t+ 1), Step 3 and (3), we have the result.

Part Two (Seller 1 profits): Recall that z(x, t) = d(x, t) + z(x, t+ 1).

Step 1: If z(x, t + 1) ≥ 0, we know from (e) in Lemma B and (2) that π1(x, t) =

d(x, t). By (c1) in Lemma A and (3) we know that π2(x + k, t + 1 + k) = 0 for

0 ≤ k ≤ T − (t+ 1).

Step 2: This an auxiliary result. Suppose that z(x, t) < 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x+ k, t+ k) < 0}.

Then 0 ≤ r(x+k, t+k) ≤ −z(x+k, t+k) if k < k̂ and 0 ≤ −z(x+k, t+k) ≤
r(x+ k, t+ k) if k = k̂. Both inequalities come from the definition of k̂, the fact

that −z(x + k, t + k) = r(x + k, t + k) − z(x + k + 1, t + k + 1) and (a2) in

Lemma A.

Combining these facts with Theorem 1, we get that π2(x + k, t + k) is equal

to r(x+k, t+k) if k < k̂, equal to−z(x+k, t+ k̂) if k = k̂, and zero otherwise.

Step 3: If z(x, t+ 1) < 0, we write:

−z(x, t+ 1) =
k̂−1∑
l=0

r(x+ l, t+ 1 + l)− z(x+ k̂, t+ 1 + k̂),

where k̂ is the integer defined in the previous step. Combining z(x, t) = d(x, t) +

z(x, t+ 1), Step 2 and (2), we have the result.
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Proof of Proposition 4

For any s ∈ S:

z(0, 1) ≡
T−1∑
k=0

(T − k)π(k).

≥
T−1∑
k=0

(T − k)π(0) ≡ −Ms.

If s is an element of G, then z(0, 0) = d(0, 0) + z(0, 1) ≥ d(0, 0)−Ms ≥ K + ε.

If π1(0, 0) = z(0, 0), then s ∈ S∗. If π1(0, 0) = d(0, 0), then s ∈ S∗ since

d(0, 0) = w(0, 0) + K and w(0, 0) ≥ ε by Assumption A3. This completes the

proof.

Proof of Proposition 5

Consider any s and s′ in S. If z′−(0, 1) = z−(0, 1) = 0, we are done. Thus, assume

that z′−(0, 1) and z−(0, 1) are strictly positive and let ∆ ≡ z′−(0, 1) − z−(0, 1).

Then, as s � s′, there is a 1 ≤ k ≤ (T − 1) such that:

∆ =
k∑
x=1

(T − x)ξ(x) +
T−1∑
x=k+1

(T − x)ξ(x). (16)

ξ(1) + · · ·+ ξ(k) + ξ(k + 1) + · · ·+ ξ(T ) = 0, (17)

where empty sums are taken to be zero, ξ(x) ≡ (π(x) − π′(x)), ξ(x) ≥ 0 for

x ≤ k, and ξ(x) ≤ 0 for x ≥ k + 1. Using (17) into (16), we have:

∆ ≥ −(T − k)
T∑

x=k+1

ξ(x) +
T−1∑
x=k+1

(T − x)ξ(x),

= −
T−k∑
l=1

lξ(k + l) > 0,
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and the proof is complete.

Proof of Proposition 6

It suffices to show that there are technologies in Nc with social value arbitrarily

close to zero. Simply consider a technology sε (ε > 0) with πε(0) = 0, πε(1) =

· · · = πε(T ) = K+ε
T

, and sunk cost ε = 0. It has a social value equal to ε and:

zε(0, 0) =
K + ε

2
(T + 1) > ε+K.

Proof of Proposition 7

If a fictitious seller 1 has access to technology ṡ, with ṡ(x) = max{s(x), s2} for

x ∈ X, he always bids more than s2. If, in addition, s2 ≤ s3, we may conclude

that Seller 2 is irrelevant in this three-sellers model. We may then compute the

profits of Seller 1, π̇1, as we do in the two sellers’ model. Also, since ṡ(x) ≥ s(x)

for all x ∈ X, we have that the profits π̇1 of the fictitious Seller 1 are an upper

bound for Seller 1’s profits—both with three sellers. Therefore, it suffices to show

that there is s∗3 ∈ (s2, s1) such that π̇1 ≤ π1 for all s3 > s∗3.

From Theorem 1 is obvious that π̇ decreases continuously with s3. Let s3 =

s1. Since in this case s3 − s2 > s2 − s(0) by assumption, we have that π̇(x) =

max{s(x), s2} − s3 < s(x) − s2 = π(x) for all x ∈ X. Then, by continuity and

monotonicity with respect to s3, there is s∗3 ∈ (s2, s1) such that π̇1 ≤ π1 for all

s3 > s∗3, and the proof is complete.

Proof of Proposition 8

Let πT be a surplus function as defined in (6). Consider a discrete-time model with

π(y) = ∆πT (∆y), y = 0, . . . , T . Quantities d, r, and z at state (y, u) ∈ X × T
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are:

d(y, u) =
T−u∑
k=0

∆πT (∆(y + k)),

r(y, u) = (1−∆u)πT (∆y),

z(y, u) =
T−u∑
k=0

[1−∆(u+ k)]πT (∆(y + k)).

Clearly, we have that d(y, u) = dT (∆y,∆u), r(y, u) = rT (∆y,∆u), and z(y, u) =

∆−1zT (∆y,∆u). The equilibrium payoffs of the sellers in the discrete-time model

are given in Theorem 1:

π1(y, u) = min {max{dT (∆y,∆u), 0},max{∆−1zT (∆y,∆u), 0}},

π2(y, u) = min {min{rT (∆y,∆u), 0},−min{∆−1zT (∆y,∆u), 0}}.

Therefore, the payoffs in the continuous-time model are simply:

πTi (x, t) :=
T∑
y=0

T∑
u=0

πi(y, u)1[∆y,∆(y+1))(x)1[∆u,∆(u+1))(t),

for i = 1, 2. Since ∆−1zT (∆y,∆u) diverges to ±∞ as T goes to +∞, whereas

dT and rT converge to d∞ and r∞, the proof is complete.
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