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1 This phenomenon is known as the case of "missing money" (Goldfeld, 1976; Goldfeld and Sichel, 1990).

I  Introduction

A crucial element when undertaking monetary policies is to count on reliable

projections regarding the likely effects of changes in income, interest rates, and other

macroeconomic variables on monetary aggregates. Understandably, the estimation of money

demand functions has been a dynamic field of econometric analysis. The frequently observed

instability of estimated parameters and the tendency of money demand equations to

systematically overestimate actual balances raises interesting questions concerning the correct

model specification, the possible segmentation of monetary markets, and the role of financial

intermediaries.1

The importance of estimating a reliable money demand equation is evident when

monetary aggregates are the target of the authority, as opposed to real interest rates or real

exchange rates. The issue becomes critical when the authority decides to switch from

targeting real variables to nominal aggregates, as is usually the case in the context of countries

with receding inflationary pressures.

Latinamerican countries which experienced acute inflationary problems in the 1980s

have recently managed to reduce inflation to tolerable levels (e.g., Argentina, Brazil, Chile

and Peru). In the Chilean case, annual inflation reduced from three-digit levels in the mid

1970s to around 25% in the early 1980s. However, despite draconian monetary policies
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during most of the 1980s and early 1990s, inflation has proved extremely hard to reduce to

single-digit levels (see Figure 1).

It has been argued that the inability of the Central Bank to reduce inflation below the

annual mark of 10%, stems from the decision of the authorities of using the real interest rate

as their preferred policy tool. This, in the context of an economy in which wages, prices, and

the exchange rate are backwardly indexed, induces the economy to work without "nominal

anchors" (Corbo and Piedrabuena, 1995). In defense of this real interest rate policy, the

Central Bank remarks that targeting monetary aggregates cannot be successful because the

demand for money in Chile is very unstable, even when considering extended horizons (Apt

and Quiroz, 1992). Some empiricall studies tend to support such hypothesis; using a variety

of techniques Matte and Rojas (1989), Labán (1991) and Herrera and Vergara (1992) show

that estimated money demand equations for real balances lack stability and usually present

parameters regarded as implausible for theoretical tastes. 

Using newer and more sophisticated techniques, however, Apt and Quiroz (1992) and

Martner et al (1995) found a stable long-run relationship between money and its fundamentals

(income, interest rates, etc), which contradict previous studies and the Central Bank's

conjecture. As discussed in section 3 of this paper, forecasting of these latter models display

large out-of-sample errors, which casts doubts regarding their applicability for monetary

policies of the sort described above. Note that in the context of reducing inflation from 15%

per year to the range of 5 to 8% by targeting the growth of monetary aggregates, forecasting

nominal aggregates requires far more accuracy than what was traditionally necessary in the
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Annualized Rate of Inflation (%)

Chilean case, when the authorities were concerned with keeping inflation in the 20 to 30%

range.

This discussion raises the point of the extent to which it is possible to obtain an

accurate forecast of the demand for money for the purpose of controlling inflation within

narrow bands, using the type of econometric techniques which has been used so far. All the

above studies concentrate on linear models, or in models which display a long-run linear

response to shocks to fundamentals, with disregard of the state of these and other economic

variables. That is the case of classical OLS and uniequational and VAR time-series models

as used by Matte and Rojas (1989), Lagos (1991), Garrido and Valenzuela (1991), Rosende
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2A process is linear in the mean if P[E(yt|xt)=X't2] = 1, for some 2 0 ú.

and Herrera (1991) and García et al. (1995). Error-correction mechanisms, as those presented

in Herrera and Vergara (1992), Apt and Quiroz (1992) and Martner et al (1995), are a step

forward in the sense that the response of money demand to shocks in the short run is different

than in the long-run or equilibrium. However, in this case the long-run relationship remains

linear: a 2% increase in income will generate in the long run twice the effect of a 1% increase,

though in the short run the responses might differ.

There are a number of theoretical considerations which suggest that specifying and

estimating linear models can be, at best, a reasonable first approximation to the problem of

the determinants of money demand, but a misleading tool when a more sophisticated analysis

is required. Section 2 discusses briefly three sources of nonlinear response of the aggregate

demand for money to changes in fundamentals: misspecification of the decision problem of

economic agents; aggregation of individual demands; and financial intermediation. It is

important to be precise about the concept of nonlinearity; throughout the paper we are

concerned with "nonlinearity in the conditional mean" of a process, which is the relevant

concept for forecasting purposes.2 Nonlinearity in other moments of the distribution are not

considered; nevertheless, some of them might still present linearity in the conditional mean

(e.g., ARCH models).
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3 Nonlinear time-series models, such as neural networks, chaos models, and threshold models are relatively
new in econometric theory (see Gallant and White, 1992, and Kuan and White, 1994); a brief exposition of
neural networks is contained in section 4.

This paper explores empirically the role of nonlinearities in the demand for money

using a nonlinear dynamic time-series model, known as a neural network structure.3 An

explicit model of the nonlinear structure of money demand is presented elsewhere (Soto,

1995); the discussion in section 2, however, indicates the type of non-linear behavior to be

expected. In this paper, I focus on estimating a nonlinear reduced-form representation of the

problem, with which explore the importance of nonlinear elements and their role in improving

money demand forecastability.

The initial step in the analysis consists in evaluating the out-of-sample performance

of estimated money demand equations, in the context of targeting monetary aggregates to

reduce  inflation levels of around 15% per year to single-digit levels (section 3). It is shown

that even when uncertainty arises only from the estimated parameterization of the function,

i.e., when money holdings are forecast out of the sample with the observed values for the

fundamentals, the degree of inaccuracy in predicted money balances is too large to base anti-

inflationary monetary policies mainly on targeting nominal monetary aggregates.

A second step, consists in testing the existence of nonlinear relationships between

money holdings and its fundamentals. In section IV, I use the neural net framework suggested

by Lee, White, and Granger (1993) to test monthly data in the 1982-1994 period. Rejection

of the linear model suggests it is desirable to explore systematically the role of nonlinearities

and that, to obtain better forecasts, the use of more complex models is inevitable. In section
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5, two types of non-linear dynamic times-series models are estimated (smooth-transition

models and single hidden-layer neural networks)and their forecasts compared to linear

predictions. Section 6 presents the conclusions.

II. Sources of Nonlinearities in Money Demand.

This section discusses three elements that may induce a nonlinear structure in the

aggregate money-income-interest rate relationship: microeconomic specification, aggregation,

and financial intermediation. For expository purposes, the analysis is undertaken using a

highly stylized framework which omits some of the details of more developed theoretical

models and focus on the role of the above mentioned topics.

II.a The Model

The problem of why in some circumstances money has a relative command over other

goods in excess of its relative value as a security, i.e. the "liquidity preference" as denoted by

Lucas (1984), remains a central issue in monetary theory. In the Arrow-Debreu framework

of the decentralized economy with no uncertainty, money does not play a role because, as an

asset, it is dominated by other assets which pay a higher return. Thus, the existence of money

and why it is valued as it is by economic agents has to be discussed as a departure of the

friction-free paradigm, either by including transaction costs or as a result of the time overlap
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4 We abstract here from "legalist" interpretations of the monetary phenomenon, as in Wallace (1983), which
place the emphasis on the monopoly of the government in creating money.

of economic agents.4 In the transaction costs literature there are two lines of analysis: one,

in which money provides a direct service to agents, thus entering in productive or consuming

activities (e.g. Sidrauski, 1967; Fischer, 1974); in the other, money is necessary because

agents face cash-in-advance restrictions (Lucas, 1978; Svensson, 1985).

Overlapping generations models justify the existence of money as a Pareto-optimal

solution to the problem of relocating wealth from one generation to the other (Samuelson,

1958); agents believe that essentially worthless pieces of paper (money) will be accepted by

the next-period young generation as wealth and, consequently, they accept money in

exchange for the commodity goods they provide to the unproductive old generation. Wilson

(1989) shows that under certain conditions this solution is equivalent to the cash-restricted

infinitely-lived agent solution. 

In this paper we use a stylized version of the generic transaction-cost model in Arrau

and de Gregorio (1994) to show what are the potential sources of nonlinearities arising from

the microeconomic behavior of agents. The model, which accommodates easily money-in-the-

utility (MUF) and fixed-velocity cash-in-advance (CIA) models, is developed for the case of

the consumer, but it can be extended straightforwardly to include the demand for money of

productive agents (firms), as shown in the Appendix. Consider an infinitely-lived consumer
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5 Note that, to maintain a simple set-up, we abstract from leisure-labor considerations. These can be easily
included.

maxc t ,b t ,m t
W ' ES t&1 m

4

s't

U(cs)e &>sds (1)

G(ct , mt ,R
i ) ' ct@ g(

mt

ct

,Ri) g )(@) (2)

which maximizes the expected present-value of utility derived from the consumption of the

only good produced in the economy5:

where > is the subjective discount factor, U(c) is a strictly concave utility function. The

consumer can allocate his/her income on the two assets available in this economy: domestic

bonds (b), with nominal return i, and money (m), with zero nominal return. Money is held

because it reduces the cost of acquiring the consumption good. Consumption costs, thus,

depend on the money-to-consumption ratio and also on a combination of idiosyncratic and

aggregate shocks faced by the consumer, which are summarized in parameter Ri (superscript

i represents the individual). Let us specify the total transaction-cost as:

where g(.) is the unitary transaction-cost function for the household. The signs of the

derivatives reflect the assumption that transaction costs reduce as more money balances are

held from last period, and increases with the size of the idiosyncratic shocks faced by an

agent. 
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The consumer faces the following flow budget constraint (in real terms):

where bt and mt are government bonds and money respectively, yt is income, Bt  is inflation

and rt is the real interest rate. The analytical solution of the problem is presented in the

Appendix. From the first order conditions of the problem we have:

which allows us to obtain a money demand equation once function g(.) is specified. Equation

4 states that the consumer will hold money balances until the reduction in the cost of

transaction (a benefit for the consumer) equals the cost of holding money in terms of foregone

interest. The latter includes both the (real) alternative cost and the expected depreciation of

money due to inflation (the model can be extended to include exchange-market capital losses).

In general, if g(.) is well behaved, its inverse exists. Then:
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II.b Nonlinearities Arising from the Specification of Microeconomic Behavior

In order to obtain a testable specification for the demand for money, explicit utility

and transaction costs functions are to be assumed. Here lies the first source of potential

nonlinearities in money demand because, to obtain linear closed-form solutions for the

demand for money, very restrictive utility and transaction costs functions are required.

Implicitly, we have assumed that the discount rate is constant and independent from wealth;

moreover, to generate the standard money-demand equations which are usually estimated in

the empirical work, we have to restrict the utility and transaction-cost functions to arbitrary

cases. For example, the MUF model can be recovered only by allowing a separable utility

function and specifying the following CES function:

where K is large enough to guarantee positive transaction costs. In this case, F corresponds

to the intratemporal elasticity of substitution between consumption and money. Using (5) and

(6) we obtain the following money demand function for the individual:
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g mt / ct ,R
i ' KRi % F mt / ct log (

mt / ct

Ri
) (8)

logm i
t ' Ri % logct (9)

The fixed-velocity CIA model can be obtained by specifying the transaction cost function as:

which in turn would generate the following money demand:

In general, the microeconomic specification of utility functions and its use to explain

the dynamics of macroeconomic variables has encountered problems, both on theoretical and

empirical grounds. On one hand, standard utility functions do not always fit the strict

mathematical requirements of the theory (e.g. the logarithmic function is unbounded); on the

other hand, representative agent models with microfoundations do not always explain

important characteristics observed in aggregate consumption or asset price data. Time

separability has been rejected by several authors (e.g., Hansen and Singleton, 1982) which

find that implausible elasticities of intertemporal substitution are required to explain the

behavior of macroeconomic data. Mehra and Prescott (1985) show that the time-separable

constant relative risk-aversion specification cannot explain the historical premium paid to



12

6Alternative specifications (e.g., Constantinides, 1991 and Epstein and Zin, 1991), developed to explain the
observed volatility of consumption and the equity premium puzzle, cannot explain the demand for low return
assets (e.g. Treasury bonds). This risk-free asset puzzle led researchers to focus on heterogeneous agents
models (Heaton and Lucas, 1992).

holders of risky assets.6 In general, all these departures from simple closed-form models

generate non-linear structures are characterized, for example, by thresholds and/or time

dependent behavior on the part of agents.

II.c Nonlinearities Arising from Aggregation

In order to obtain a specification of the aggregate demand for money, individual

functions need to be aggregated. The simplest way to aggregate consists in assuming that the

economy is inhabited by n-identical individuals, with n large enough to avoid non-competitive

outcomes, and that a single representative-agent setup is sufficient to describe the aggregate

behavior. Though in practical terms researchers do not pretend that all agents are identical,

they expect idiosyncratic deviations to play a minor role in affecting individuals. However,

as Caballero (1992 and 1994) notes, there are several cases in which the combined behavior

of agents affected by idiosyncratic and collective shocks can deviate completely from the

individual response, leading to the well known problem of fallacy of composition. In

particular, given a degree of heterogeneity in the behavior of individual agents it is possible

to obtain aggregate responses that are insensitive to this heterogeneity; on the other hand,
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given a rather homogeneous group of agents, it is possible to observe a non-linear response

if shocks are strong enough to reshape the cross-section distribution of agents.

To portray this problem in the case of the demand for money, let us extend the model

to the n-agent case to include aggregate and idiosyncratic shocks to income, each with a

specific (and independent) probability function. Using a linear specification of the above set

of equations we abstract from nonlinearities arising from the individual behavior of economic

agents to concentrate on aggregation issues. Aggregation amounts to obtaining the cross-

section distributional implications of individual's behavior in the presence of both types of

shocks. That is, we would like to see whether the response of the combined agents to multiple

shocks differs from the individual response to single shocks. The main reason to expect a

different response between an individual and the aggregate in this context is the presence of

transactions costs in consumption. In their absence, agents can adjust consumption to optimal

levels after a each shock costlessly and instantaneously; with friction, the response of

consumption, and hence the demand for money, will depend on the path of aggregate and

idiosyncratic shocks.

If we assume that Ri comprises of idiosyncratic and aggregate shocks and denote f(R)

the density function of individual shocks, the problem of determining the aggregate demand

for money can be expressed as:
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7 See Caballero (1992).

where mt stands for the aggregate real money demand. Equation (10) shows that mt

corresponds to the sum over all individuals in the economy of their expected level of money

balances, conditional on the probabilities of facing general and specific shocks.

A key element in simplifying the analysis is the application of the Glivenko-Cantelli

theorem,7 which states that as the number of agents becomes large, the cross-sectional

distribution of outcomes will converge to the common probability function describing all

possible outcomes for the individual (i.e. probabilities are stationary). The representative

agent model, then, is a truthful representation of aggregate dynamics only if all agents have

the same objective and transaction costs functions, they start from the same endowment

(wealth), and face the same shocks. The latter case amounts to perfect shock correlation

among agents (i.e., cov(Ri,Rj) =1, œ i…j).

A second case of microeconomic behavior which is truthfully reflected in the

aggregate arises  when all shocks are completely uncorrelated among individuals (cov(Ri,Rj)

= 0, œ i…j); in this case, the cross-sectional distribution does not depend on the structure of

individuals responses because of the stationarity of idiosyncratic shocks.

When shocks are imperfectly correlated (1>cov(Ri,Rj)>0, œ i,j), the cross-sectional

distribution is not stationary; however, it is stationary conditional over the entire path of

aggregate shocks. That is, the response of the aggregate money demand depends on the
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history of realizations of aggregate shocks, on the degree of heterogeneity of agents, and on

the correlation of shocks.

The literature on S,s rules has exploited this issue of aggregation asymmetries to show

that only in the few cases described above, aggregate shocks does not induce the collective

behavior to be different than that of individuals (see Caballero and Engel, 1991). In the

context of monetary economics, Caplin and Spulber (1987) show that in a menu-costs

framework the neutrality of money holds only in the unlikely event that money supply shocks

are monotone and continuous. With non monotone money supply shocks, the "second

positive shock may have very different effects on real variables than the first positive shock".

II.d Nonlinearities Arising from the Role of Financial Intermediation

A third source of nonlinear responses of monetary aggregates to shocks to the

fundamentals arises from the presence of financial intermediaries. The Modigliani-Miller

theorem, which states that financial variables and hence financial intermediaries do not affect

decisions concerning "real variables", has been widely criticized at both the theoretical and

empirical levels. In a comprehensive survey of the literature, Gertler (1988) divides the

arguments used to justify the presence of intermediaries in two areas. First, financial

intermediaries appear because of the existence of information costs that make too costly for

depositors to monitor borrowers; asymmetric and nonlinear responses usually arise in this

context. For example, Stiglitz and Weiss (1981) show that kinked credit supply functions
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(non-linear rationing) are consistent with competitive equilibrium outcomes, when banks

cannot determine the idiosyncratic risk of individual borrowers, but only the aggregate level.

Second, financial intermediaries appear when they can reduce transaction costs between

depositors and borrowers. Boyd and Prescott (1986) show that intermediaries can effectively

reduce the "lemon" risk problem described in Stiglitz and Weiss (1981) through an adequate

portfolio diversification. Banks exist also because they can provide credit to firms which face

uncertain liquidity needs as in the model of Bernanke and Gertler (1987). 

It is possible, then, to obtain nonlinear responses in the aggregate money demand to

changes in fundamentals as a result of the behavior of financial intermediaries reacting in

asymmetric environments to changes on those fundamentals. In fact, Goldfeld and Sichel

(1990), among others, have argued that in the case of the US after 1974, "the period of

missing money is largely attributed to the effects of financial innovation" (pp 305).

There have been several attempts to test for financial innovations, mostly for

developed countries, with a variety of techniques. Justification and interpretation of the

results, however, have been hampered by the lack of theoretical models and the implicit or

explicit presumption that innovation is an exogenous event. Simple time trends have been

used by Lieberman (1977) and Moore et al. (1988). Proxy variables, such as the ratio of

nonbank financial assets to total financial assets and the ratio of currency to money have been

employed by Bordo and Jonung (1987) and Soklos (1993). Virén (1994) tests the volume of

credit card transactions. Cooper and Ejarque (1994) model financial intermediation as a pure
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8 Financial innovation presupposes that technical progress induces always a reduction in transaction costs; the random
walk specification, however, allows for positive and negative financial innovation.

9This standard specification of innovation has been used in other contexts to discuss endogenous growth
models (see for example, King and Robson, 1993).

random shocks at the individual level, while Arrau et al (1995) suggest intermediation can be

described by a random walk process.8

II.e A Simple Model of Endogenous Financial Innovation

A microeconomic model of endogenous financial innovation is presented in Soto

(1995), which develops a simple framework to obtain a money demand function similar to

that in equation 7, but where the intercept is a nonlinear function of the investment in research

and development undertaken by the financial sector.

The standard model presented above is extended to consider the role of financial

intermediaries in creating mechanisms to economize on the cost of holding money balances.

Considering technical innovation a non-negative random process controlled by a Poisson

distribution,9 the following aggregate money demand equation can be derived:
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logmt ' 2t % $0 logct % $1 log
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where N(Bt) is the expected benefit from innovation, i.e., the probability of finding an

innovation (x/1-x) times the benefit of it .&b&

When there is no financial innovation (e.g., when costs outweigh its benefits), the

standard linear specification of the money demand function describes adequately the behavior

of monetary aggregates. However, when innovation is active (e.g., when a long-lasting

inflationary shock makes profitable to invest in R&D even if the outcome of such investment

is random). the non-linear component modifies in a significant way the response of monetary

aggregates to changes in fundamentals. In fact, elasticities become time-dependent.

The empirical counterpart to the endogenous financial innovation model derived for

the case of a single representative financial intermediary is the logistic smooth-transition

model (LSTR). In the case of a competitive banking industry, several N(B) functions may

appear and single hidden-layer neural network would be a more appropriate specification. A
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10We use monthly data of the industrial sales index as a proxy for expenditures, the 30-to-90 day deposit
interest rate, the average nominal exchange rate, and the end-of-month M1A (deflated by the CPI) as the
measure of money balances.

thorough discussion of neural network and smooth transition specifications, as well as the

empirical results for the demand for money in the case of Chile is presented below.

III. Estimating the Demand for Money in Chile

This section discusses the literature on money demand models applied to the Chilean

economy. Each specification is subject to specification tests -in particular for nonlinearities-

and their forecasting abilities evaluated. In replicating previous work, I do not use the original

data for reasons of availability and comparability across studies; replication results based on

information produced by the Central Bank of Chile, however, do not differ significantly from

the original papers. Figures 2 and 3 presents the evolution of money balances and its

fundamentals.10
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Log mt ' $)xt % µ t (12)

III.a Traditional specifications of the demand for money

Traditional models of money demand (Matte and Rojas, 1989; Rosende and Herrera,

1991) parameterize aggregate money balances and fundamentals by means of standard

econometric procedures (OLS, IV, etc), which correspond to variations of the following static

specification:

where mt represents end-of-period real money balances, xt is a vector of (weakly) exogenous

variables, $ is a vector of coefficients, and µ t is an i.i.d. error term. In the case of Matte and
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Rojas (1989) and Rosende and Herrera (1991) the specification corresponds to the

Cambridge model, where vector x includes the log of real expenditures and the level of the

nominal interest rate, supplemented by a multiplicity of dummies. Since currency substitution

was a common phenomenon in the early 1980s, exchange rate devaluations are also included

as an explanatory variable. It would be natural, then, to expect close correlation between

devaluations and interest rates; empirically, the correlation in the 1982-1994 period is not very

high (36%), probably because neither the exchange rate nor interest rates have been entirely

market determined. The Central Bank managed the nominal exchange rate within a exchange

band and followed a policy of tight control over the interest rate.
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Table 1
Traditional Money Demand Estimations

Dependent Variable: Log M1A / CPI
1978.1 - 1992.8

OLS
Cochrane-Orcutt

Correction
OLS

Cochrane-Orcutt
Correction

Log Expenditures
1.04

(20.74)
-0.0016
(-0.16)

1.020
(19.87)

-0.017
(-0.15)

Log Interest Rate
-0.126
(-5.77)

-0.117
(-6.19)

-0.115
(-5.11)

-0.117
(-6.19)

Nominal
Devaluations

- -
-0.78

(-1.77)
-0.005
(-0.06)

Constant
-3.97

(-16.30)
1.28

(2.22)
-3.81

(14.73)
1.28

(2.21)

D
-

0.97
(34.62)

-
0.97

(34.4)

Adj. R² 0.821 0.923 0.825 0.923

DW 0.889 2.42 0.915 2.42

Note: t-statistiscs in parenthesis. Critical values for the null hypothesis of no autocorrelation of the DW test
are: 1.69 and 1.77 at 5% and 10% confidence. Seasonal dummies, included in the estimation, are omitted
from the table.

Table 1 presents the results of estimating equation 14 using OLS and the Cochrane-

Orcutt procedure to correct for autocorrelation. Both OLS equations, including or excluding

exchange rate devaluations, present obvious econometric problems. Autocorrelation of the

residuals, as expressed in DW tests well below the critical value of 1.46 for a sample of 100

observations, suggests either that errors are truly autocorrelated (in which case the Cochrane-

Orcutt technique would be useful) or that there is a problem of spurious correlation. The

latter case looks as the more probable, since the DW is similar in size to the adjusted R²
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11 No major differences would arise if the estimation period includes only the post Debt-crisis years (1984-1993).

(Granger and Newbold, 1974). The DW can also be used as a test of stationarity for the

residuals; in this case, the above results suggest that errors are probably non stationary.

Moreover, Cochrane-Orcutt results show that the estimated D is suspiciously close to 1 so as

to suggest the presence of a unit root, in addition to coefficients for expenditures that are

non-significant and negative.11

There is, however, an alternative explanation for this evidence, which is explored

below, namely that the relationship may contain, in addition to the standard linear

determinants of money balances, additional nonlinear components. If the relationship between

money and income, interest and exchange rates is truly nonlinear, a linear approximation

would probably display several of the above symptoms: residual autocorrelation (as it is

probable that the non-linear component may act for periods of time), lack of significance of

parameters (which average over periods of different intensity of response) and relatively high

fit (when the linear component is important).

III.b Cointegration and dynamic money demand functions

Arrau and de Gregorio (1994) use Dickey-Fuller tests to present evidence that most

variables in vector x and real money balances may contain a dominant unit-root. If that is the

case, parameters in equation 14 do not have standard probability distributions which, in turn,
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12 There is some concern regarding the ability of the unit root tests to distinguish between stationary series
with long memory from truly non-stationary variables (Cochrane, 1988). More important in the Chilean
context, DF tests are very sensitive to structural breaks (Hendry and Neale, 1991; León and Soto, 1994).

Logmt ' "t % $)xt % µ t µ t - N(0,F

"t ' "t&1 % 0t 0t - N(0,F2
0

(13)

invalidates inferences upon them (although they remain unbiased).12 Engle and Granger

(1987) show that when each variable in model is I(1), there may be a linear combination of

them which yields stationary residuals, i.e., an I(0) error term. In such case, there is a long-run

relationship among the variables and, in the time-series jargon, the model cointegrates. The

parameters in cointegrating regressions are superconsistent as they converge to their

asymptotic values at a much faster rate than in standard models (T instead of T½), which helps

identifying long-run relationships in rather reduced samples. Nevertheless, the covariance

matrix of errors does not have the standard properties, which in turn complicates inferences

upon the parameters.

Arrau and de Gregorio (1994) also found that money, income and interest rates failed

to cointegrate in the 1975-89 period. They interpret this as evidence that an important

determinant of money balances has been left out of the estimation, which they label "financial

innovation" and propose to capture this phenomenon by adding a random-walk component

to the standard money demand specification:

where 0 is an i.i.d. error-term. By construction, the model in equation (13) should generate

a stationary error-term (the sum of 0t and µ t) and very high fit, and thus the variables should
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look as if they were cointegrated. The problem of the specification is that by introducing a

random-walk as an explanatory variable we turn the problem into one of trivial integration;

the random walk will capture all the permanent shocks of real money and vector xt will pick

up only transitory shocks.

From a policy point of view, the main disadvantage of this specification is that the

model is useless for predictive purposes because, being financial innovation represented by

a random-walk, the best prediction of future financial innovation available is its current level.

Moreover, the variance of predictions, itself a function of the variance of both types of shock

(0 and µ), increases linearly as it is dominated by the random-walk process. Hence, the

forecast in the medium to long term has nearly infinite variance and it becomes useless for

monetary policy.

Of the several techniques available to model dynamic money demand equations, the

Chilean case has been analyzed mostly using VARs (García et al., 1995), cointegration-error

correction specifications (Labán, 1991; Herrera and Vergara, 1992; Apt and Quiroz, 1992),

and multivariate error-correction models (Martner et al, 1995). Since traditional VARs

exclude cointegrating vectors thus missing the long-run relationship of the variables and, in

addition, present severe econometric limitations (see Granger, 1989), this section

concentrates on error-correction models (ECM).
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Logmt ' $)xt % µ t (a)

)Logmt ' "))xt & ([Logmt&1&$
)xt&1]%<t (b

(14)

The simplest specification of this type of model is:

equation (a) is usually called "cointegrating vector", while equation (b) is referred as the

"error-correction mechanism" (Engle and Granger, 1987). Table 2 presents the results of

estimating the error-correction model using monthly data for the 1983.1-1992.8 period; we

reserve the data on the 1992.9-1994.06 period for out-of-sample forecasting comparisons.

Apt and Quiroz (1992) prefer to use the Engle-Granger two-step procedure to

estimate the model. In the first stage, the cointegrating vector is estimated by OLS and the

residuals are computed; in the second step, the error-correction model is estimated using lags

of those residuals. Our results match that of Apt and Quiroz for the cointegrating vector,

although we obtain a smaller elasticity for expenditures (0.90 versus 1.07). The estimation of

the error-correction model also matches their results in general terms, though some

parameters are less significant than in the original study. There are, however, technical

reasons of efficiency and feedback effects which suggest using a one-step nonlinear least

squares estimation of the model (see Phillips and Loretan, 1991; Stock and Watson, 1993);

column 3 presents the results of the estimation. The structure of the long-run relationship

between money, expenditures and the alternative cost of holding money do not change

significantly and, in fact, are closer to the original Apt-Quiroz results. Nevertheless, the speed

of adjustment implied by the one-step specification is considerably faster than that of the 2-
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step model (0.234 vs 0.134): in practical terms, 95% of a shock would dissipate in 21 months

according to the 2-step model, while it would only take 11 months in the single-step model.

Apt and Quiroz (1992) show that an important advantage of their model with regards

to previous estimations is that it presents a smaller forecast error. Their within-sample mean-

squared forecast-error of the estimated error-correction model was in the 1.5 to 3% range,

while that of the static model in Herrera and Vergara (1992) was in the 2.5-6% range.

Nevertheless, when out-of-sample forecast errors are computed the model does not perform

as impressive as within the sample. Figure 4 presents the dynamic forecast of money demand

for the 1992:9 to 1993:11 period. It can be seen that, although the error-correction model

performs satisfactorily in the short-run (6 to 9 months), in a longer horizon it deviates

considerably more than a naive forecast based on the static models estimated in table 1.



Table 2
Error Correction Money Demand Estimations, 1983:1 1992:8

Dependent Variable: Log M1A/CPI

Exogenous Variables Two-Step Procedure Single Step
Procedure

Cointegration Error Correction

Constant
-3.250
(-11.3)

-4.569
(-7.10)

Expenditures
0.906
(15.7)

1.06
(9.14)

Normalized
Interest Rates

-0.125
(-4.92)

-0.314
(-4.87)

Nominal Exchange 
Rate Devaluation

-1.686
(-3.44)

-1.742
(1.45)

Lagged (1) Error
-0.134
(-2.96)

-0.234
(-5.34)

Lagged (1) )M1A
-0.347
(-4.07)

Lagged (2) )M1A
-0.167
(-3.66)

) Expenditures
0.095
(1.32)

Lagged (1)
)Expenditures

0.67
(0.91)

-0.128
(-1.64)

Lagged (7)
)Expenditures

-0.025
(-0.38)

) Interest rate
-0.097
(-7.99)

-0.128
(-8.47)

Lagged (1) ) Int.
rate

-0.080
(-5.52)

Lagged (2) ) Int.
rate

-0.056
(-3.82)

Lagged (5)
)Devaluation

0.305
(1.86)

Lagged (1) )
Devaluation

-0.165
(-0.95)

ADF test -5.73 - -8.25

adj R² 0.753 0.621 0.635

DW 0.829 1.97 2.62
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Figure 4
Out-of-sample forecast of money demand

Actual

Error
Correction
Forecast

Static Forecast

A  more important issue for the purpose of using estimated equations to target nominal

aggregates is that the magnitude of the forecasting error is too large to be confident that

monetary policies based on the estimated model would be successful. In a 6-month ahead

forecast, money balances predicted by static models fails in the order of 10% of actual

balances; the error-correction model performs better in 6 months horizons (2.7%) but for a

one-year horizon the latter increases to 9%. To give an idea of why these magnitudes are too

large for reducing inflation from 15% to single digit levels, it suffices to think in terms of the

quantitative theory of money (MV=PY); with income growing at 5% in real terms and
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13 Two other specifications are not included in the analysis for lack of replicability. Labán (1991) estimates
a traditional specification with time-varying parameters, using Kalman filter algorithms. Easterly et al (1994)
test Cagan's specification with a variable interest rate semi-elasticity.

velocity approximately constant in the short-run, a range of ± 10% of error in setting nominal

money levels would induce inflation to fluctuate in the 5 to 15% range.13

IV. Using Artificial Neural Networks to Test for Neglected Nonlinearities

The previous section presented evidence that linear money demands approximate the

true relationship between money and its determinants in an unsatisfactory way for the purpose

of doing fine adjustments to monetary policy. This section revises the extent to which

potential nonlinearities discussed in section 2 might be the cause of these problems. We focus

on neural networks as they are able to model highly complex dynamic models in simple but

powerful manners (Kuan and White, 1994).

Artificial neural networks (ANN) are a class of input-output models developed to

understand the way in which the human brain processes information, characterized by their

ability to learn from trial and error procedures. The ANN is based on four principles described

below: massive parallelism, nonlinear neural unit response to neural unit input, processing in

multiple layers, and dynamic feedback among units. In econometric terms, ANN are a

particular group of nonlinear parametric models, where "learning" corresponds to the

statistical estimation of model parameters.
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Figure 5 presents a schematic representation of the simplest ANN. This single hidden-

layer ANN is composed of an input layer, a single intermediate layer (hence the name) and

the output layer, linked by ( and $ functions. The first layer uses as input a vector of data

Xt={x1,x2,x3,x4}t which are processed typically in simple ways, using a (-weight function.

The outcome of the operation is processed by the hidden layer using the $-weight functions

to yield the output response.

Figure 5
Single Hidden-Layer Network
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mt ' fh (xt ,2 ) ' F $h0
xt % j

q

j'1

G(x )

t (j)$h j h'1,...,v(15)

This simple structure portrays some of the features of ANN, and helps us establish a

link with standard econometric practices. Parallelism in processing information, though not

as massive as it is usually encountered in neural biology for example, is a standard feature of

most econometric work. A widely utilized example of this feature is the simultaneous

equation model, in which the information of the so-called exogenous variables (vector x in

figure 5) is often used in several equations. A second element, nonlinear response to unit

inputs, is at the heart of ANN. The simplest form of nonlinear behavior is a zero-one response

to inputs. Processing units activate only when input activity {x} reaches a certain threshold

b, such that G(x)=1 if x>b and G(x)=0 otherwise. A smoother version, used in the next

section, consists of using a sigmoid function, in particular the cumulative logistic distribution,

that would create an S-shaped response: unit response turns gradually on as input activity

increases, but beyond certain limits (superior and inferior) the response is attenuated. The

network in Figure 5 can be easily adapted to multiple layer processing, by introducing

additional layers between the hidden and output layers, whilst feedback mechanisms among

units, from equal or different layers, can be also easily included. 

The mathematical representation of the ANN model belongs to the family of the

flexible functional form models (Elbadawi et al, 1989; Gallant and White, 1992) and can be

written as:
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mt ' fh (x ,2 ) ' $)

0 xt % j
q

j'1

Gj(x
)

t (j)$j (16)

Equation (17) says that output yt is a nonlinear function of inputs {xt} and a series of

parameters 2={$'1, $'2,..., $'v, ('1...('q} with $'h={$h0...$hq} belonging to the v inputs in vector x

and the q different units in the hidden and input layers. F(.), which maps from ú6ú, is usually

called the "output activation function", while G(.) is the hidden layer specification. A well

known example of this type of specification in standard nonlinear procedures is the logit

model; in such case, F(.) is the identity function and G(.) is the cumulative normal distribution.

In the empirical analysis we use an augmented version of equation (15) which allows

for a combination of linear and nonlinear processes in determining the output, called the

augmented single hidden layer network. Figure 6 sketches the structure of the neural net in

this case. This specification, which is the base for the neural net test for nonlinearity, retains

the standard linear component of money demands, labeled A, but incorporates an additional

nonlinear component, labeled B. Mathematically:

where F function is assumed to be the identity, and the weight of input in each hidden layer

unit is given by $0.. The where the null hypothesis of linearity is $j=0, œ j. Note that $0'xt is

the optimal linear predictor of y given x, and corresponds, for example, to the classical money

demand specifications, as in Matte and Rojas (1989), or to an error-correction model, as in

Apt and Quiroz (1992).
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(

t ) (17)

Figure 6
Augmented Hidden-Layer Network

The power of the test relies on the ability of the set of G functions to extract structure

from the residual e*t=yt-x't$0. Stinchcombe and White (1991) suggest that when the G

function is the logistic, the terms G(x'() are, generically in (, able to extract such structure.

Implementing the tests as a Lagrange multiplier test correspond to testing:
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Mn ' n &1/2j
n

t'1

Rt êt

)

Ŵn
&1

n &1/2j
n

t'1

Rt êt
(18)

nR 2 6 P2 (q() (19)

where Rt/(R(xt''1),R(xt''2),...,R(xt''q)) and '=('1,'2,...,'q) is chosen a priori, independently

of the sequence {xt} for a given q0 ù. Following Lee et al. (1993), in the empirical

application vector T will be chosen randomly from a probability distribution.

In constructing the test, e* is replaced by the sample residuals (ê). The statistic has

the form:

where ên is a consistent estimator of the variance of the term in parenthesis. Under the null

hypothesis of linearity, Mn distributes as a P²(q) as n64. There are, however, two practical

problems in computing the test: (1) elements of Rt tend to be collinear with xt and with

themselves, and (2) computation of ên can be tedious. The solution to the first problem

consists in using q<q* principal components; for the second problem an equivalent test can

be utilized, which avoids the explicit computation of ên:

where R² is the uncentered squared multiple correlation from a standard linear regression of

ê on Rt and xt. Lee et al (1993) show that this test is, in general, more or equally powerful

than other tests (e.g. Ramsey's Reset, White's, Tsay, etc.) when the hidden-layer function G

is modeled as a cumulative logistic function. Teräsvirta et al. (1993), however, show that a

test based on the Lagrange multiplier of a Volterra expansion of the series (such as Ramsey's
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14 Both tests regress the residuals of a linear regression between money and its fundamentals against those
fundamentals and powers of the forecasted money demand. Keenan includes as fundamentals only lags of
money balances, while RESET includes also income, interest rates and devaluations.

RESET test used below) performs as well or better than the neural network test when the

activating unit lacks the intercept.

Table 3
Testing for nonlinearities in the demand for money in Chile

(1983.1-1992.8)

Traditional Error Correction-Cointegration 

Tests# Without Seasonal
Dummies

With Seasonal
Dummies

Without Seasonal
Dummies

With Seasonal
Dummies

Keenan (univariate)
6 lags, 2 fitted terms

12 lags, 2 fitted terms
4.10*
5.21*

3.61*
1.51 

-
-

-
-

RESET (multivariate)
2 fitted terms
4 fitted terms

51.5*
53.5*

42.9*
48.6

3.9**
5.47*

5.17*
6.68*

Neural Network I
q = 3
q = 5

21.9*
31.7*

19.8*
48.9*

21.9*
23.0*

49.8*
51.8*

Neural Network II
q = 3
q = 5

8.4**
34.2*

1.49
27.3*

8.4**
10.14*

37.4*
31.8*

Note: (#) Keenan's and RESET estimators are tested against an F(k-1,n-k) where k is the number of fitted
terms and n is the number of observations. The neural-network test distributes as a P²(q). (*) Rejects the null
hypothesis of no-nonlinearities at the 1% level; (**) rejects the null hypothesis of no-nonlinearities at the 5%
level.

Table 3 presents the results of applying three nonlinearity tests to money demands. We

focus on the two models discussed in section 3 (classical specifications and error correction-

cointegration models). Keenan's and the RESET tests are based on using transformations of

the residuals from estimated money demand functions to verify whether there remains some

information that would improve forecasts.14
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Two versions of the neural-net test are used in the analysis. The first model (ANN-I)

considers the following specification for the case of the traditional money demand (an

equivalent expression is used in the case of the error-correction model):

This specification is consistent with the type of non-linear response discussed in

section 2. If the G functions are able to improve forecasts, the source of that improvement

cannot be assigned to changes in a particular fundamental. An alternative specification is to

test a specific model of nonlinearity such as that proposed in Soto (1995) and summarized in

section 2, where financial innovation is driven by financial intermediaries responding optimally

to the costs of inflation. In that case, equation (20) is modified to consider a simpler model:

Both specifications were estimated using a logistic specification for G functions and

considering two cases for the number of hidden layers (q=3 and 5) to control for the fact that

the number of G functions is arbitrary. To implement the test, ( coefficients were randomly

drawn from a uniform distribution in the [-2,2] interval. A large number of repetitions (not

reported) confirmed that these results are not due to singularities of the starting values used

in the estimation.
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The results are remarkably consistent. When considering the traditional specification

all tests reject the null hypothesis of linearity, regardless of the inclusion of seasonal dummies

or the number of fitted terms in Keenan and RESET tests. The null hypothesis of linearity is

also rejected by neural network tests, although when including only inflation in the

specification of the sigmoid, the test is less able to extract structure from the residuals. A

similar phenomenon is observed in the case of the cointegration error-correction model, for

which tests in the majority of cases reject linearity at 1%.

V. Estimating Non Linear Specifications of the Demand for Money

The first part of this section analyzes a simplified version of neural network

specification, called smooth-transition model, which corresponds to the case where there is

only one G-function in a single hidden-layer model. Estimating a smooth transition model for

money demand is useful as a first step toward the estimation of the neural network model, as

it helps characterize the parameter space and solve minor technical issues. In addition, it

provides important insights concerning the relationship between money and its fundamentals.

The second part of this section presents the estimation of the neural network models. Given

the limitations of the data, we focus on a single hidden-layer model with five G-functions

which, in the most complicated model, implies estimating recursively 34 parameters with 127

degrees of freedom.
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(a) Log mt ' 2) [Expt , it , êt ] % G1 ([1,Expt , it , êt ]
)(1 )$1

(b) Log mt ' 2) [Expt , it , êt ] % G2 ([1,Bt ]
)(2 )$2

(22)

(a) )Logmt ' "))[ Expt , it , êt ] & N mt&1&2
)[Expt&1 , it&1 , êt&1 ,G1 ([1,Expt&1 , it&1 , êt&1 ])(1 )$1

(b) )Logmt ' "))[ Expt , it , êt ] & N mt&1&2
)[Expt&1 , it&1 , êt&1 ,G1 ([1,Bt&1 ])(1 )$1

(23)

Smooth Transition Models

 Two specifications for the sigmoid activation function are tested; one including all

fundamentals as activating variables and a restricted version, consistent with the last model

in section 2, which concentrates only on inflation as an activator. For the traditional

specification of the demand for money, we then have:

while for the error-correction model the following equations are estimated:

note that in the error-correction model the sigmoid function is considered part of the long-run

relationship of the variables.

As is the case in all nonlinear estimations, starting values and estimation procedures

are of importance. I used as starting values those obtained from the linear estimation; this is

intuitive since we already know that the linear specification is a reasonable first approximation

to the data. Regarding the estimation strategy, I first use a quasi-Newton method (e.g.,

Davidon-Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno) to approach quickly a

solution and narrow the parameter space; to obtain final estimates, Newton-Raphson methods

are used.
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Table 4
Smooth Transition Models of the Demand for Money in Chile

(1983.1-1992.8)

Traditional Specification Error-Correction Specification

Parameters# Linear

Smooth I

All

Fundamentals

Smooth II

Inflation

Only

One Step

Estimation

Smooth I 

All

Fundamentals

Smooth II

Inflation 

Only

21 -0.035 -0.120 3.430 -0.013 0.577 -0.044

22 0.924 1.393 0.916 1.066 1.280 1.096

23 -0.123 -0.157 -0.097 -0.303 -0.276 -0.230

24 -1.617 -3.618 -1.700 -0.852 -1.581 -0.819

$1 2.703* -3.473 -0.621 -2.046

(1 -3.961 4.402 6.646 1.331

(2 -5.330 16.761

(3 0.359** -1.851

(4 12.123 -13.092

(5 2.470 -0.436

"1 0.115 0.131 0.051

"2 -0.134 -0.133 -0.118

"3 -0.189 -0.186 -0.235

N 0.231 0.357 0.307

R² first diff

R² level 0.772 0.867 0.790

0.433

0.636

0.495

0.791

0.475

0.767

DW 0.99 1.48 1.15 2.32 2.26 2.43

Note: (#) Contrary to the standard practice (*) non-significant at 5%, (**) non-significant at 10%, the rest

are significant at 1%. Seasonal dummies, included in the estimation, are omitted from the table. 
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The results, which are presented in table 4, show several interesting results. First, the

smooth transition model improves considerable the estimation of the traditional specification

of the demand for money. The goodness of the fit improves substantially when considering

the case of a sigmoid function driven by all fundamentals (higher R²) and residuals tend to

exhibit less serial correlation (as measured by Durbin-Watson statistics), though in the case

of the inflation activated sigmoid, they do not signal unequivocally non-correlated residuals.

Nevertheless, in both cases DW statistics support the notion that, if variables are integrated,

they cointegrate. Second, when considering the error-correction model, both smooth-

transition models are superior to the standard specification in terms of fit and dynamic

properties. The speed of convergence in the latter models is markedly faster than that of the

one-step model (itself faster than the two-step procedure in Table 2); a coefficient in the range

of 0.30-0.35 implies that, on average, 95% of a shock will dissipate in a period of 6 to 8

months. 

It is interesting to note that when including the non-linear structure in the estimation

the point estimates of the parameters of the linear component do not change markedly. Scale

elasticities, for example, remain in the neighborhood of one. This would suggest that the

sigmoid function is effectively extracting structure from the residuals of the linear component,

as discussed above when testing for non-linearities, and is not too colinear with fundamentals.

Moreover, this is consistent with the theoretical discussion in section 2 which hypothesized

that as an economy moves toward non-extreme situations (e.g., high and volatile inflation to

low and stable), non-linearities are likely to become important. In the Chilean case, the sharp
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15 Note that the error-correction model present a higher mean-squared forecast-error than the static models.
This is a consequence of estimating money balances dynamically, i.e., forecasted money balances are used to
generate the next-period forecast of money balances, thus accumulating deviations on time.

decline in the volatility of inflation in the early 1990s changed the structure of the demand for

money in a way such that linear models cannot apprehend, but that the smooth-transition

model is able to uncover.

The estimated models were used to calculate the out of sample mean-squared

forecast-error for the 1992.9-1994.6 period. The simulation was undertaken using the

observed out-of-sample values for fundamentals. The results are reported in table 5.15 The

main conclusion, which concerns both the traditional and error-correction specifications, is

that the inflation driven sigmoid presents the lower forecast error as the horizon increases

(15-21 months), coinciding with the period in which inflation reduced markedly (see figure

1). This suggests that in models which include activation functions, it may not be necessarily

important to obtain a good fit within the sample to generate successful forecasts, but rather

to approximate the data with a flexible specification able to accommodate changes in the

behavior of exogenous variables in ways that are not contained in the estimation sample. In

our case, it can be argued that the stabilization of inflation and its reduction in the post

estimation period encouraged agents to maintain money balances beyond what had been

traditional for the volume of transactions they undertake and the alternative cost they face.
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Table 5
Mean Squared Forecast Error 

(in percentage)

Year /

Month

Linear Models

Smooth Transition 

All Fundamentals

Smooth Transition

Inflation

Neural Network

All Fundamentals

Neural Network

Inflation

Traditiona

l 

Error

Correction 

Traditional Error

Correction 

Traditiona

l

Error

Correction 

Traditiona

l

Error

Correction 

Traditiona

l

Error

Correction 

92.09 3.8 1.3 3.1 2.4 2.6 3.6 2.7 0.8 1.2 0.8

92.10 3.5 1.1 3.0 2.2 2.5 3.2 1.4 0.7 0.6 0.7

92.11 3.2 1.1 2.8 2.1 2.3 3.0 1.0 0.5 0.4 0.6

92.12 2.9 1.0 2.6 2.0 2.2 2.8 0.9 0.8 0.4 0.5

93.01 3.0 1.0 2.6 1.4 2.3 2.7 0.7 1.0 1.1 0.5

93.06 3.1 1.3 2.1 0.8 1.8 0.9 1.1 1.3 1.5 0.3

93.12 2.4 3.7 2.3 5.1 1.8 2.7 0.9 1.0 1.0 0.6

94.06 2.4 8.8 2.9 9.7 1.8 6.0 1.1 1.1 1.0 1.4
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Log Mt ' 2)[Expt , it , ê] % G1 ([1,Bt]
)(1)$1 % G2 ([1,Bt]

)(2)$2 (24)

ST%1 ' ST % 0T%1L f̃T%1(mT%1 & f̃T%1) (25)

Neural Network Models

When considering the full estimation of a neural-net specification for the demand for

money the following identification problem arises. Let us focus on a reduced version of the

traditional specification, as in equation (22), with only 2 G-functions in the hidden layer:

Clearly, switching (s and $s would not affect the estimation of vector 2, nor any feature of

the estimation procedure. Note that this problem does not invalidate linearity testing

procedures as specified in the previous section, because the test was based on the ability of

G(.) functions to extract structure from the residuals of the linear model and not on an

adequate parameterization of the neural net. This is why we could draw the ( parameters

from a random distribution without estimating them.

A simpler solution to this problem, and also a more robust procedure, consists in

expanding the Munro-Robbins recursive estimation algorithm (Kuan and White, 1994) to

consider the following updating scheme for the parameters in equation (26):

where S = {2', (1 ... (n, $1 ...$q} and T represents a sufficient number of observations that

make a first iteration of the recursive estimation feasible:
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(a) fT(xT ,S) ' j
q

j'1

$jN ((j ,xT)

(b) f̃T ' fT (xt ,ST&1)

(c) L f̃T '
M
MS

f (xT ,S)
S'S̃T&1

(26)

Equation (28a) corresponds to the activation units in the hidden layer of the neural net, while

equation (28b) is the forecast value of mT based on the recursively estimated parameters as

of time T-1. The last equation correspond to the actualization of the parameters, using the

gradient method and based on the distance between the forecasted money balances and the

actual value.

A key parameter in the estimation is the convergence rate, 0T, which is time-

dependent. White (1989) and Granger and Teräsvirta (1993) suggest that specifying it to be

proportional to sample size is an adequate procedure (0T=%T-1). White shows that, if m and

x are random vectors and 0 is a declining rate, then the estimated vector 2 converges to a

local minimum with probability 1 or diverges to infinity with probability 1.

This "backward propagation" algorithm, when used in large samples, should be able

to attain convergence with a single pass through the data, using quasi-Newton methods at the

start of the estimation to reduce the parameter space and Newton-Raphson techniques for the

final iterations. In small samples, however, bootstrapping is necessary; in our case (127
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observations) the final estimation of the model required the latter procedure. To avoid falling

into sub-optimal parameter regions, the starting values for the grid search are those of

smooth-transition models for the linear components and the first G-function, while the rest

are drawn randomly from a standard normal distribution.

Table 6 presents the results of the estimation of the neural network with 5 units in the

hidden layer for both specifications of the activation unit. It can be seen that the estimation

does not differ markedly from that of the smooth transition models in terms of the degree of

fit and the size of the parameter of the linear component, except that scale parameters are

slightly smaller in the case of the traditional specification. When considering the error-

correction model, we note that the parameters of the linear component resemble those

estimated by Apt and Quiroz (1992) and others. Scale parameters are very close to unity and,

in the case of the sigmoid activated by all fundamentals, the interest rate elasticity and the

semi elasticity of nominal devaluations are also very close to the single-step error-correction

model in table 2. Nevertheless, the degree of fit of the long-run model is far superior. In

contrast, the inflation-activated sigmoid model fits the data better in the case of the first

differences model. As we will see, this will have implications for the forecasting ability of each

model. Only the estimated weights of the sigmoid functions ($ parameters) are reported for

space limitations.

From the estimated parameters it would seem, then, that the neural network model

has not been able to extract more structure from the data. Nevertheless, when contrasting the

out-of-sample forecasting performance of these models, neural networks projections present
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a considerably lower mean-squared forecast-error (MSFE) than smooth transition and linear

models (see table 5). When considering the traditional static specification, neural networks

present a MSFE between 33 and 50% lower than linear models and smooth transition models;

in the case of dynamic error-correction models, the MSFE of the neural network is one half

that of linear models in short horizon forecasts and one fifth in a 22-month prediction. Note,

in addition, the ability of the inflation-activated sigmoid model to predict money balances,

despite the fact that the fit within the sample is worse than that of linear and smooth transition

models.
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Table 6
Neural Network Models of the Demand for Money in Chile

(1983.1-1992.8)

Traditional Specification Error-Correction Specification

Parameters# Neural I
All Fundamentals

Neural II
Inflation Only

Neural I
All Fundamentals

Neural II
Inflation Only

21 -0.246 -0.446 -0.614 -0.535

22 0.891 0.860 1.057 1.098

23 -0.045 -0.111 -0.521 -0.203

24 -2.146 -1.478 -1.769 -0.476

$1 -20.738 -0.982 0.944 -1.287

$2 20.797 0.480 -0.370 1.209

$3 28.016 -1.205 -1.026 -1.711

$4 -4.951 1.034 0.566 0.821

$5 -0.125 2.316 -0.975 2.339

"1 0.064 0.189

"2 -0.113 -0.146

"3 -0.089 -0.159

N 0.164 0.281

R² first diff
R² level 0.825 0.708

0.334
0.813

0.457
0.575

DW 1.11 0.78 2.31 2.39

Note: (#) Contrary to the standard practice, (*) non-significant at 5%, (**) non-significant at 10%, the rest
are significant at 1%. Seasonal dummies are omitted from the results. Standard errors are computed using
White's heteroskedasticity robust procedure.

It is also interesting to note that long-run parameters in the error-correction version

of the neural network are of similar size to those of the standard error-correction model. This

is consistent with the endogenous financial innovation model described in section 2, which
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suggests that innovation is more likely undertaken when the economy moves toward

moderate and stable inflation levels. In that case, shocks to the fundamentals have an

additional effect on money demand and a highly nonlinear structure arises. The neural

network model encompasses these two situations: parameters of the linear component, which

is dominant when the state of the economy does not give rise to innovation, are very similar

to those of standard error-correction models estimated in the period of high and volatile

inflation, while the estimated G-functions incorporates the non-linear effect. It is precisely this

last element which explains the improvement in forecastability in these latter models. Without

the non-linear device, money demand forecasts obtained from error-correction models would

deviate from observed values by as much as ±10% in a 15-month forecast (table 5), while

forecasts including the nonlinear component would fail by 2.5 to 5%. Hence, for the purpose

of controlling inflation within a narrow band (e.g., a target of 7% inflation with a ±2

percentage points of deviation), standard error-correction models would yield very inaccurate

forecasts. Neural net models, on the contrary, would forecast real money balances with more

accuracy and, provided a good estimate of real GDP growth, would generate targets for

nominal monetary aggregates which are consistent with desired inflation levels.

Can we avoid using a non-linear model to forecats money demand?

The previous analysis has pointed to the fact that inflation -among other variables-

could have a non-linear impact on money demand as financial intermediaries react to changes
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in inflation in non-symmetric ways. Even if accepting that inflation may affect money demand

beyond the effect of nominal interest rates, it is natural to be skeptic regarding the need of

developing a complicated neural-network model. An indirect way of checking the need of

using non-linear models consists of comparing inflation with the estimated impact of the non-

linear component of one of the estimated money demand equations. To keep the comparison

simple, we use the estimated neural network model for the traditional specification in table

6 and isolate the fitted non-linear component using the estimated parameters. This, in turn,

is normalized by inflation for each point in the sample. The results are presented in figure 5.

If the relationship between these two variables remain relatively flat of a period of time, we

could argue that a non-linear dynamic model is unnecessary, as the same information could

be obtained from a much simpler linear structure.

When analyzing the evolution of this ratio two elements are striking. First, it is evident

that inflation cannot be used as a proxy of the sigmoid as the relationship among them is far

from being linear (flat). The presence of large deviations from the mean ratio around the end

of 1985 and in 1989-90 suggests that there are periods in which the sigmoid is very active

while in other it remains rather inactive (e.g., post 1992). Second, it should be noted that in

those periods in which there is activity in the sigmoid the economy faced a sudden increase

in inflation -to almost 30% per year in each occasion- although the reasons for these

phenomena differ; in the former, the debt crisis and its sequel of large nominal devaluations

generated high, though short lived, inflationary pressures. In the latter, the political cycle

induced unsustainable expansions in public expenditure and investment. It is, in fact,
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remarkable how the evolution of this the ratio matches with what we should expect from the

theoretical model regarding the response of agents to the evolution of inflation. Note that, due

to the above normalization, the ratio measures the "excess" response of the non-linear

component when compared to inflation. It is precisely in those periods when there is high

inflation that the ratio exhibits sudden jumps in activity, reflecting the behavior of agents

avoiding the costs of those inflationary shocks.

Figure 5
Ratio of the Estimated Marginal Contribution of 

the Non-linear Component in the Forecast of Money Balances
to Annual Inflation
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6. Conclusions.

An important element when implementing monetary policies is to count on reliable

forecasts of the behavior of monetary aggregates in response to shocks to fundamental

variables, such as interest rates, the nominal exchange rate or the level of consumption. When

estimating and forecasting money demand the Chilean experience mirrors the international

case: frequently, parameters are unstable and appear distorted when confronted to theoretical

priors, while forecasts tend to overestimate actual levels (the case of "missing money") or to

fall short of actual demands (the "excess monetization" case).

Empirical studies have applied increasingly sophisticated econometric specifications

to the demand for money, including Kalman filtering, error-correction models with

cointegrating relationships, VARs, etc. Results, however, are mixed: although the within-

sample estimation has improved considerably when compared to traditional static models,

modern techniques have not been successful in reducing the out-of-the-sample forecast error,

particularly at long horizons.

 A common feature to these techniques is the assumption of a linear long-run

relationship between money balances and its determinants. This paper contends that it is this

particular structure which causes the predictive failure of estimated models, in special in the

case of Chile. During the last years, monetary authorities have allowed an increasing

deregulation of domestic and foreign financial markets. This more competitive environment

led financial intermediaries to undertake a series of important financial innovations (e.g.,
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automatic teller machines, electronic interbank transactions, etc) which, in turn, have affected

the long-run determinants of the demand for money balances. Linear models have trouble in

tracking these changes as their rigid parametric structure is not well suited for what is more

likely a time-dependent relationship.

Non linear techniques, as those proposed in this paper, can tackle this issue in a direct

way. The effect of nonlinearities in the estimation and forecast of the demand for money is

analyzed using recently developed time-series techniques based on the architecture of neural

networks. Neural networks have been developed to mimic the way in which information is

usually processed in the human brain, allowing for massive parallelism, nonlinear neural unit

response to neural unit input, processing in multiple layers, and dynamic feedback among

units. In econometric terms, this framework corresponds to highly non-linear time series

models with adaptive update of parameters.

The main advantages of these new techniques rely on exploiting the richness of their

non-linear structure and the ability to learn in an adaptive way the underlying data generating

process of the data. As more information is available and can be supplied to the model, the

estimated structure is easily updated using an optimizing algorithm which improves the fit and

forecastability of the model. In addition, neural networks are designed to process information

in multiple layers, thus able to model and explain highly complex structures.

The methodology proceeded in three stages. First, standard models of the demand for

money are estimated to provide a benchmark for the assessment of the forecasting abilities

of different techniques. We include static and dynamic error-correction models. Second, we
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test for non-linearities in the data, both using univariate and multivariate tests; in general, the

null hypothesis on linearity is amply rejected by the data, even for sophisticated specifications.

Third, we estimate two of the simplest non linear dynamic models: the smooth-transition

model and the augmented single-hidden layer specification of a neural network model.

The results can be grouped in three categories. First, there is strong evidence that the

relationship between money balances and its determinants (expenditures, interest rates and

nominal exchange rates devaluations) presents important nonlinear components, which, if

omitted, have adverse effects when forecasting money balances with linear specifications. The

out-of-sample mean-squared forecast-error of linear models increases drastically in the

1992.9-1994.6 period, when the economy moved out of a high uncertainty scenario

(repressed growth and high and volatile inflation) towards a more stable regime (rapid growth

with stable and slowly declining inflation).

Second, simple nonlinear structures, such as the smooth transition model and the

single-layer neural network model, can improve significantly the quality and out-of-sample

forecastability of static and dynamic models of the demand for money. Non linear models,

which use a sigmoid activation function to capture potential non linear elements in addition

to standard linear components, improve the within-sample performance and display better fit,

less correlation of residuals and stable parameters. The latter, in general, also fit theoretical

priors. 

Third, forecasts from linear models of money balances tend to display large errors as

the horizon lengthens which make them useless for undertaking monetary policies aiming at
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controlling nominal aggregates. On the contrary, neural network forecast money balances

with very low forecast error at long horizons and in particular when fundamentals present

large changes for sustained periods of time. For the period 1992.9-1994.6, neural networks

present a mean-squared forecast-error in the order of 1%, while static linear models present

more than 3% and dynamic error-correction models around 6%. To a large extent. the

permanent reduction in inflation cause the large error in the latter.

Among the most interesting results it is important to note that neural network models

estimated in this paper encompass previous estimates of linear models. Since the sigmoid

activation function attenuate the effect of nonlinearities when the activating variables cross

certain upper and lower thresholds, it should be expected that in those periods the estimated

neural network model matches the structure of linear models, and that when activating

variables activate the sigmoid income and interest rate elasticities deviate from the linear

model. In both cases this is verified, but the inflation activated sigmoid is more interesting

because inflation per-se is not a determinant of money balances, acting only through the

sigmoid. When considering the recent macroeconomic experience in Chile in which inflation

stabilized (1993) and reduced to single digit levels (mid 1994), it is reasonable to expect that

before 1993 nonlinearities captured by the sigmoid function had a negligible effect when

predicting money balances because during unstable periods the sigmoid component is not

active. However, after price stabilization was achieved the contrary should be observed.

Finally, there remains to be explored the improvements that may arise from using

multiple-layer neural network models applied to this case. In principle, multiple-layer neural
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nets could approach the data with arbitrary closeness, though this may not necessarily

translate into improved forecasts. Nevertheless, it would be reasonable to expect an

improvement in predictions, in particular in the short run, as the dynamic nature of the

relationship between money and its determinants is better parameterized.
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APPENDIX

A.1 Solution to the Maximization Problem of Consumers

The setup given by equations (1) to (3) implies the following Hamiltonian:

which in turn implies the following first order conditions:

from the bonds condition we obtain the relationship between 8t and 8t+1 which in turn is used
in the money holdings condition to obtain equation (4) in the text.
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A.2 Specification and Solution to the Maximization Problem of Firms

Firms maximize the present value of its cash flows to be paid as dividends. Output is
produced, with constant returns to scale, using two factors: capital (Kt) and labor (Lt): 

hence, yt represents output per worker and kt is capital stock per worker. Since labor is
supplied inelastically by households we can normalize it, without loss of generality, at 1. The
labor market, then, clears at wage wt. 

The firm's crucial variable of decision in this set-up is investment, it, which is
undertaken facing transaction and installment costs, H(it,mt,kt). Transaction costs arise from
the need of obtaining information regarding profitable opportunities in the market;
maintaining liquidity (money balances as a fraction of investment) is a cost-reducing strategy.
Installment costs, on the other hand, represent the direct cost in terms of output which has
to be devoted to produce capital goods; it is increasing in the amount of investment and
decreasing in the stock of capital. Hence:

The firm's budget constraint can be specified as:

The optimization problem for the firms, then, can be written as:

subject to :
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here the interest rate is assumed variable, so that firms face a path of interest rates {rt}t=0,4

instead of a constant rate. Hence, the discount rate has to be properly adjusted to . Thee
&m

s

t

rsds

Hamiltonian of the problem is:

where qt is the shadow price of capital. The optimality conditions of the problem are:

Equation (a) shows that investment will take place until the shadow value of installed
capital equals the marginal cost of an extra unit of capital. Then, whenever q t=1, investment
will be zero, as the shadow value of capital equals its replacement cost. Equation (b), is the
condition for the maintaining money balances, which yield a money demand function once
function h(.) is appropriately specified. Equation (c) corresponds to equation of motion of real
wealth, while (d) is the standard no-Ponzi game condition.
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