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Abstract

In the case of small pelagic fish it seems reasonable to consider harvest functions

depending nonlinearly on fishing effort and fish stock. Indeed, empirical evidence about

these fish species suggests that marginal catch does not necessarily react in a linear way

neither to changes in fishing effort nor in fish stock levels. This is in contradiction with

traditional fishery economic models where catch-to-input marginal productivities are

normally assumed to be constant. While allowing for non linearities in both catch-

to-effort and catch-to-stock parameters, this paper extends the traditional single-stock

harvesting economic model by focusing on the dependence of the stationary solutions

upon the nonlinear catch-to-stock parameter. Thus, we analyze equilibrium responses

to changes in this parameter, which in turn may be triggered either by climatic or

technological change. Given the focus in this study on the case of small pelagic fish,

the analysis considers positive but small values for the catch-to-stock parameter.

Keywords: small pelagic fisheries, Cobb-Douglas production function, optimal

control, maximum principle.

1 Introduction

Small pelagic fish stocks, such as anchovy, sardine, herring and jack mackerel represent
an important proportion of world’s marine fish harvests (currently about a third of it, with
more than 20 million tons per year worldwide, according to FAO statistics; (Herrick, Norton,
Hannesson, Sumaila, Ahmed, and Peña-Torres 2009)). In some fishing nations (e.g., Peru
and Chile), fisheries of this type are important resources for their national economies, both
in terms of value added production as well as for regional employment.
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Small pelagic stocks are characterized by some peculiar features. On the one hand, they
tend to face strong and recurrent cycles of fish abundance. On the other, they usually
provide high catch yields per unit of fishing effort, even if the stock is being depleted, i.e.
the catch per unit of fishing effort can be fairly independent of the stock size. Given these
characteristics, different pelagic stocks have experienced fishing collapse. Examples in the
XXth century are the sardine fishery in Japan during the early 1940s, the sardine fishery in
California a decade later, the herring population in the North Sea and the Atlanto-Scandian
herring stock at the end of the 1960s and early 1970s, and the early 1970s collapse of the
Peruvian anchovy (Peña-Torres 1996).

The above-mentioned characteristics about small pelagic fish are normally absent from
traditional mathematical fishery economic models. This literature has typically focused on
the case of linear harvest functions (well known examples are (Clark 1980; Clark 1990);
(Plourde and Yeung 1987); (Dockner, Feichtinger, and Mehlmann 1989)). This approach
has obvious advantages in terms of mathematical tractability. Thus, the model that usually
describes a single species fish stock’s evolution in continuous time is

ẋ(t) = F (x(t)) − u(t)x(t),

where x(t) is the fish stock level at time t, u(t) is fishing effort1 and F is the species’ biological
growth function.

In contrast, and given this paper’s focus on the case of small pelagic fish resources, we
consider a Cobb-Douglas form for the harvest function2:

h(t) = uα(t)xβ(t), (1.1)

where h(t) is the rate of harvesting at time t (measured in tons per unit of time), and α and
β are two positive parameters such that α + β ≥ 1.

The value of parameter α controls for how fishing effort’s marginal catch productivity
(yields) varies as fishing effort changes. Thus, α = 1 implies constant marginal catch pro-
ductivity of additional fishing effort units. On the other hand, the parameter β measures
how sensitive catch yields are to marginal changes in fish stock level. In the case of constant
unit cost of fishing effort, the lower the value of β the less sensitive the unit harvest cost will
be to variations in fish stock level. Hence, the lower the value of β the more likely should
be, ceteris paribus, the occurrence of fishing collapse.

In relation to literature about applied fisheries stock assessment methods, the case
α = β = 1 describes a fishery context where the catch per unit of fishing effort (CPUE)
is proportional, in a time-invariant fashion, to stock abundance. In such a case, fishery-
dependent data such as the CPUE could be used, in principle, as an index for estimating

1The use of a single input variable presupposes that other inputs (e.g., labour, capital) are used in fixed
proportions, so input use intensity can be measured up by a single variable.

2This is a widely used functional form in economics. See (Heathfield and Wibe 1987, Chapter 4) about
its properties when applied to modeling production functions. However, its use at fishery models has been
very uncommon. Rare exceptions are (Léonard and Long 1992), (Hannesson 1993, Page 53), (Hannesson
and Kennedy 2005) and (Peña-Torres 1995). See also (Dasgupta and Heal 1979) for a classical description
of its use at optimal economic growth models for economies with exhaustible natural resource.
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unknown fish abundance. However, there are different reasons why the relationship between
CPUE and stock abundance could be both non-linear and time-varying. Regarding the case
of schooling fish species, such as small pelagics, different empirical studies have indeed pin-
pointed the relevance of a non-linear relationship between CPUE and stock abundance (for
more details, see (Wilberg et al. 2010); (Quinn and Deriso 1999, Chapter 1); (Hilborn and
Walters 1992);(Csirke 1988)).

In effect, and regarding function (1.1), different empirical studies about small pelagic
fisheries suggest that the conjecture "α and β would simultaneously be close to one" should
be rejected. Indeed, available evidence suggests positive values but lower than the unit for the
case of β (e.g., (Opsomer and Conrad 1994); (Bjorndal and Conrad 1987)). For this type of
fish stocks, some authors have even suggested that, for certain ranges of fish abundance, total
independence may eventually prevail between catch yields and fish stock levels (e.g., (MacCall
1976); (Clark 1982); (Csirke 1988); (Bjorndal 1988; Bjorndal 1989))3. Regarding the value
of α, available evidence for several small pelagic fisheries suggests positive values that are
either close to or even greater than one (e.g. (Bjorndal 1987; Bjorndal 1989); (Bjorndal and
Conrad 1987); (Opsomer and Conrad 1994); (Peña-Torres and Basch 2000); (Peña-Torres,
Vergara, and Basch 2004)). Thus, in order to maintain mathematical tractability, in this
paper we will limit the analysis to studying cases with α ≤ 1.

The evidence cited on small pelagic fish confirms the relevance of analyzing fishery con-
texts with β positive but small enough. Thus, special emphasis should be put on the effects
of relatively stock-insensitive, or even declining, average (unit) harvesting costs at reduced
stock levels (Peña-Torres 1996). The possibility of stock-insensitive average (unit) harvesting
costs arises as the result of defensive strategies that these fish species follow at reduced stock
levels: as the stock x declines, fish shoals tend to increase their density as a defense response
to natural predators. For species that live near to the sea surface, like small pelagics, the
latter effect tends to reduce average (unit) harvesting costs4.

Therefore, this paper will assume harvesting settings in which α+β = 1 and β is positive
but near to zero. Indeed, our analysis will be focused on the resulting stationary equilibria
when β is tending to zero. In particular, given α + β = 1, that we assume for the sake
of mathematical simplicity, we study the effects of changes in the proportion (α/β) when
β → 0 and α → 1.

To study the sensitivity of a fishery equilibrium to changes in parameter β can provide
useful insights not only from the viewpoint of analyzing the risk of fishing collapse, but also
for other relevant issues. For example, it may help to anticipate new equilibrium responses

3Marine biologists (e.g. (MacCall 1990; Csirke 1988)) have stated that in small pelagic fisheries mean
harvest yields (per unit of fishing effort) are not a good predictor of changes in fish abundance. The hypothesis
is that when abundance falls, small pelagic stocks tend to reduce the range of their feeding and breeding
areas, with concurrent decreases in the number of schools, despite that schools’ average size may remain
constant. That is, the stock reduces the range of its spatial distribution while simultaneously increasing
its density. This behaviour could result in a relation of (at least transitory) independence between harvest
yields and fish stock abundance.

4(Wilberg et al. 2010) is an excellent recent review on different sources of density-dependent changes in
fish catchability and thus, more generally, on reasons for getting a non-linear relationship between CPUE
and stock abundance.
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in a given type of fishery – for which there will be a value of β that summarizes the combined
effect of environmental and technological factors upon the interaction between fish abundance
and the resulting catch yields per unit of fishing effort–, when the fishery faces changes in
the value of its parameter β. The latter may occur as a result of climatic change and its
triggered effects on the level, density or location of the fish stock in exploitation, or due to
technological or institutional innovations that affect fishermen’s capacity to search and catch
fish shoals.

The analysis of a fishery’s equilibrium response to changes in β can also provide useful
insights when the fisheries regulator needs to evaluate the comparative advantage of using
landing fees or harvest quotas in a given type of fishery. Indeed, as long as this decision is
affected by different types of uncertainty (e.g., about fish location, stock estimates or even
economic parameters), the regulator’s optimal policy choice will normally depend not only
on the type of uncertainty faced but also on the value of parameter β, or of changes in it, as
the latter will directly affect the unit cost of harvesting (see (Jensen and Vestergaard 2003;
Weitzman 2002; Hannesson and Kennedy 2005)).

For simplicity, we consider the optimal control problem of a fictitious (price-taking) sole
owner, say a social planner, who maximizes the total discounted value of the intertemporal
flows of the fish stock economic rents, when the harvest function of each agent is given
by (1.1). We analyze the steady states of the associated dynamical system describing the
asymptotic behavior of these states when β in (1.1) tends to zero.

The outline of this article is as follows: Section 2 introduces the social planner’s problem
when β ∈ (0, 1) and α + β = 1. Section 3 analyzes the unique steady state equilibrium’s
behavior as a function of parameter β. Section 4 discusses the asymptotic behavior of the
unique stationary equilibrium when β → 0. This section constitutes the main core of our
work. Finally, in Section 5 we present our final remarks. Mathematical proofs are relegated
to the Appendix.

2 The social planner’s problem

We will model in a highly stylized fashion the real-world fishery management problem by
assuming that it simply consists of choosing a single decision variable, that is, the fishing
effort level. We will also assume, in contrast with real-world fisheries stock assessment
practices, that the fish stock under exploitation is perfectly known at any time. We use
these simplifying modeling devises so that to focus more directly on analyzing the sensitivity
of the social planner’s decision about the optimal scale (stationary level) of fishing effort,
and hence of the stationary equilibrium levels for the harvest rate and the fish stock, with
respect to changes in the parameter β. Recall that this parameter is a modeling artifact
which aggregates and summarizes the effect of different possible sources of non-linearity
between the CPUE and fish abundance.

Consider N symmetric fishing units (say vessels) harvesting simultaneously a single-
species fish stock. The number of fishing units is exogenously defined (say by exogenous
political considerations). All these vessels are under the social planner’s control.
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Given an admissible fishing effort policy u(·), the resulting rate of harvesting h(·) is given
by the Cobb-Douglas function (1.1). Thus, the evolution of the fish stock level x(·), starting
from an initial condition x0 > 0, is given by the solution of the following ordinary differential
equation:

{

ẋ(t) = F (x(t)) − Nuα(t)xβ(t) t > 0

x(0) = x0

(2.1)

where the biological growth function F is assumed strictly concave and twice continuously
differentiable. We shall assume that there exists K > 0 called saturation constant such that
F (0) = F (K) = 0 and F (x) > 0 for all x ∈ (0, K).

Notice that the specification at equation (2.1) assumes the possibility of decreasing har-
vest returns from marginal fishing effort units only at the vessel level. Thus, aggregate fleet’s
congestion effects are ruled out by assumption.

Example 2.1. Some examples of biological growth function F are the following:

• Logistic function: F (x) = ax(1 − x/K);

• Gompertz function: F (x) =

{

ax ln(K/x) if x > 0
0 if x = 0

where a > 0 is a given parameter.

In what follows we assume that x0 ∈ (0, K) and therefore the trajectory x(t) remains in
this interval for all t > 0 and for any applied fishing effort.

The social planner’s problem consists of choosing each vessel’s fishing effort u(t) ≥ 0
in order to maximize the total discounted value of the intertemporal flow of the natural
resource’s rents given by

J(u, x) := N

∫ +∞

0

e−rt(puα(t)xβ(t) − cu(t))dt (2.2)

where r > 0 is the (time invariant) discount rate, c is the (constant) unit cost of fishing
effort, and p is the (constant) unit price of harvesting. In order to ensure the positivity of
the instantaneous profits above, we will assume from now on that p > c.

Hence, for a given initial condition x0, the infinite horizon control problem is established
as follows:

(PSP ) V (x0) := max
u∈U

{J(u, x) : x solves (2.1)} (2.3)

where J(u, x) is the criterion given in (2.2) and the admissible control set U is defined by

U = {u : [0, +∞) −→ [0, +∞) : u piecewise continuous}.

In what follows we suppose that the maximal value is so high that, in practice, the fishing
effort u never reaches it. This explains the range set of the form [0, +∞) for admissible efforts
u in the definition of U .
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We will focus on the problem (PSP ) when the marginal catch productivity is strictly
decreasing with respect to the stock level, that is when β ∈ (0, 1). Moreover, for the sake of
simplicity, we shall assume α + β = 1. The latter allows us to work with a strictly concave
Hamiltonian.

From the optimal control theory, the Pontryagin’s maximum principle establishes (e.g.
(Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko 1962; Bardi and Capuzzo-Dolcetta
1997; Vinter 2000)) that if u : [0, +∞) −→ [0, +∞) is an optimal solution of the infinite
horizon problem (PSP ) and x : [0, +∞) −→ (0, K) the associated fish stock level, then there
exists a function λ differentiable almost everywhere (a.e.) such that

λ̇(t) = rλ(t) − βNpuαxβ−1 − λ(t)(F ′(x̄) − βNuαxβ−1) a.e. t > 0; (2.4)

and, the Hamiltonian defined by

H(λ, x, u) = N(puαxβ − cu) + λ(F (x) − Nuαxβ) (2.5)

is maximized in u(t) for every t, that is

H(λ(t), x(t), u(t)) = max
u≥0

H(λ(t), x(t), u). (2.6)

In this formulation, the function λ represents the current valued shadow (unit) price of x.
Therefore, given an optimal policy u and the associated trajectory x, equality (2.6) allows

to obtain the expression of u in terms of the shadow price λ and the stock level x. Indeed,
since the Hamiltonian H is maximized in u(t), Fermat’s rule ∂H

∂u
= 0 gives

u(x(t), λ(t)) =







0 if λ(t) ≥ p
(

α(p−λ(t))
c

)
1

β

x(t) if λ(t) < p.
(2.7)

As expected, the above expression shows that if the social planner’s shadow value of
keeping an additional unit of fish stock at sea is higher than the harvest price p, then the
optimal policy consists in stopping fishing effort completely and immediately.

From (2.1), (2.4), and (2.7) we obtain a new system for the state x and adjoint state λ
given by















ẋ(t) = ϕ1(x(t), λ(t))

λ̇(t) = ϕ2(x(t), λ(t));

x(0) = x0,

(2.8)

where

ϕ1(x, λ) :=

{

F (x) if λ ≥ p

F (x) − Nφα(λ)x if λ < p,

ϕ2(x, λ) :=

{

λ(r − F ′(x)) if λ ≥ p

λ(r − F ′(x)) − βNφα(λ)(p − λ) if λ < p,
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and

φ(λ) :=

(

α(p − λ)

c

)
1

β

.

Notice that the functions ϕ1 and ϕ2 are continuously differentiable. This implies the
existence and uniqueness of (x, λ) solution of system (2.8).

3 Properties of the stationary equilibrium

The proposition below ensures the existence and uniqueness of a steady state of the system
(2.8).

Proposition 3.1. If r < F ′(0) < N((1 − β)p/c)
1−β

β , then the system (2.8) has only one
steady state (x∗(β), λ∗(β)) satisfying the relation:

λ∗(β) = p −

(

c

1 − β

) (

F (x∗(β))

Nx∗(β)

)
β

1−β

. (3.1)

Furthermore, the unique steady state is in (xr, K) × (λ̄β, p), where

F ′(xr) = r and λ̄β = p −
c

(1 − β)

(

F (xr)

Nxr

)
β

1−β

.

Proof. See Appendix A.1.

Remark 3.2. Notice that the term N((1 − β)p/c)
1−β

β converges to +∞ when β → 0. Then,

for small values of β, the hypothesis F ′(0) < N((1 − β)p/c)
1−β

β holds true.

Remark 3.3. The stationary solution λ∗(β) that is relevant to our analysis is necessarily
positive, as the latter is the only solution of economic interest. Notice that the positivity of
λ∗(β) will hold for β > 0 small enough.

Naturally, we need to impose condition F ′(0) > r to ensure that the stationary solution
x∗(β) will be strictly positive. Otherwise, it would be optimal to fully deplete the resource x
and thereby being able to invest the obtained harvesting profits at the market return r > 0.

Proposition 3.1 also states that the optimal stationary state x∗(β) will be strictly above
the value xr. The logic for this is as follows. First of all, the stationary economic optimum
implies that no additional gains can be obtained from exploiting x at a different level.
Therefore, at the stationary equilibrium, the return obtainable from marginal investment in
x must fully coincide with the opportunity cost of that investment. In our problem (PSP ),
such opportunity cost is given by the parameter r > 0. Whereas the marginal return from
investment in x can be obtained by applying the Euler-Lagrange equations to our problem
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(PSP ). The resulting marginal return is described by the left-hand-side of the following
equation:

F ′(x∗(β)) +
Ncβ

1 − β

(

F (x∗(β))
Nx∗(β)

)
1

1−β

λ∗(β)
= r. (3.2)

The latter is a variant (for 0 < β < 1) of the well-known equation describing the stationary
optimal solution (x∗, λ∗), often described as the “fundamental equation of renewable resource
exploitation” (e.g., see (Bjorndal and Munro 1998), and (Hannesson 1993, p. 35)).

By resorting to equation (3.2), we can now explain why the optimal state x∗(β) (for
β > 0) will be strictly above xr.

As (3.2) shows, the return from keeping an additional unit of x at sea comes from two
sources. On the one hand, the biological return of keeping an additional unit of x at sea,
which is given by F ′(x∗(β)). On the other, the profits resulting from the incremental harvest,

given by ∂(uαxβ)
∂x

> 0, is positive for β > 0. This second source of return will thus increase
the profitability of investing in x, adding itself to the gain directly consisting of the marginal
biological return F ′(x∗(β)). Therefore, the intertemporal equilibrium (that is, the optimal
investment) condition will be such that F ′(x∗(β)) < F ′(xr) = r and, by the strict concavity
of function F (·), then x∗(β) > xr.

Remark 3.4. It is straightforward to prove that the unique steady state of the system (2.8)
is a saddle point. This property arises in many different economic contexts. In the case
of harvesting fishery models, it can be found in (Léonard and Long 1992, p. 295) and
(Peña-Torres 1995), both considering a logistic function F and α = β = 1/2.

4 Analysis about the asymptotic behavior when β → 0

In this part, we study the behavior of the unique steady state (given by Proposition 3.1)
with respect to variations of parameter β. In particular, we focus on the case of β → 0.
In addition to the relevance of this case for small pelagic fish stocks, its analysis provides
general insights about the equilibrium responses to be expected in a ‘low β’ fishery, when
that fishery’s β may be changing due to environmental or technological exogenous shocks.
This asymptotic analysis also provides insights about the equilibrium responses underlying
a fishery that is approaching the well-known case of α = 1 and β = 0. See e.g. (Hannesson
1993, Section 2.8) and (Clark 1990, Section 3.5).

For the parameter β ∈ (0, 1), we shall denote by x∗(β) and λ∗(β) the corresponding
(unique) steady states. The pair (x∗(β), λ∗(β)) solves the following system of equations







0 = F (x) − Nφ1−β(λ)x

0 = −λ(F ′(x) − r) + βNφ1−β(λ)(λ − p).
(4.1)

8



We write u(β) for the associated steady control, which is given by

u(β) =

(

α(p − λ∗(β))

c

)
1

β

x∗(β). (4.2)

Thus, the rate of harvesting at the equilibrium is

h(β) = Nu(β)αx∗(β)β = F (x∗(β)). (4.3)

The following proposition establishes the continuous dependence of the obtained steady
states with respect to parameter β, concluding that the equilibrium points are a differentiable
function of this parameter. Additionally, the result below provides the limits of the steady
state functions when β goes to zero.

Since our analysis is focused in small β configurations, in the following we shall assume

that the assumptions of Proposition 3.1 hold true, that is, r < F ′(0) < N((1 − β)p/c)
1−β

β ,
and therefore for each considered β there exists only one equilibrium point.

Proposition 4.1. There exist two continuously differentiable functions x(·) and λ(·) such
that for each β > 0 small enough, (x(β), λ(β)) is the unique solution of the system (4.1).
Moreover, when the parameter β goes to zero, it holds that:

1. lim
β→0

x(β) = xr ;

2. lim
β→0

λ(β) = p − c ,

where xr is such that F ′(xr) = r. Finally, the limit of the optimal effort at the equilibrium is

lim
β→0

u(β) =
F (xr)

N
.

Proof. See Appendix A.2.

Remark 4.2. Note that, since the steady state of system (2.8) is unique, Proposition 4.1
above implies that (x(β), λ(β)) = (x∗(β), λ∗(β)), for all β ∈ (0, 1). From now on, we can use
the notation (x(β), λ(β)) for the steady states of (2.8) without any possibility of confusion.

Remark 4.3. It is well known that the solution of the Pontryagin system (2.8) associated
with problem (PSP ) when α = 1 and β = 0 is a turnpike solution approaching as fast as
possible to the values x = xr and λ = p−c (see (Clark 1990)). So, Proposition 4.1 establishes
that the limit behavior of the steady states solutions (x(β), λ(β)), when β → 0, is coherent
with this limit result.

When β → 0 we see from condition (3.2) that there will tend to remain a unique source
of return from keeping an additional unit of x at sea, that is the biological growth rate
F ′(x(β)). This is so because, as β → 0, the current period profits tend to be independent
of x and therefore the Hamiltonian (or value) function at (2.5), which has to be maximized
by choosing the optimal control u(β), varies with changes in x only by the differential effect
F ′(x). As a result of this, the optimal stationary equilibrium x(β) tends to xr.
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Proposition 4.4. The limits of the derivatives of steady states with respect to β, when
β → 0, are:

lim
β→0

dx

dβ
= −

cF (xr)

F ′′(xr)(p − c)xr

> 0; (4.4)

lim
β→0

dλ

dβ
= −c

[

ln

(

F (xr)

Nxr

)

+ 1

]

. (4.5)

Therefore, for β small enough, we have:

1. dx
dβ

> 0, that is, x(β) decreases when β decreases.

2. (a) if ln
(

F (xr)
Nxr

)

+ 1 > 0 then dλ
dβ

< 0, that is, λ(β) increases when β decreases.

(b) if ln
(

F (xr)
Nxr

)

+ 1 < 0 then dλ
dβ

> 0, that is, λ(β) decreases when β decreases.

Proof. See Appendix A.3.

b

λ(β)

p − c

β1 β2 β

case (b)

case (a)

Figure 1: Different behaviors of the steady state λ(β), depending of configurations described
in (a) and (b).

The result in Part 1 of Proposition 4.4 is directly related to the economic intuition
already analyzed regarding the results in Proposition 3.1: a greater value of β > 0 increases
the profits from one of the two sources of positive marginal returns that are obtained by
keeping an additional unit of x at sea. Thus, at the steady state equilibrium a greater value
of β will necessarily imply a higher stationary value for x.

In Part 2 of Proposition 4.4, the result describes, for a given function F (·) and given
values of N and r, how the asymptotic stationary solution for λ(β) is approached when
β → 0: that is, either approaching it from an initial stationary λ value that is above the
stationary solution p−c (case b; see Figure 1), or from a λ value that is below the stationary
solution p − c (case a).
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The result (2.a) implies that dλ
dβ

< 0 if the value5 F (xr)/(Nxr) is above a minimum

bound. So, for a given function F (·) and a given N , (2.a) holds for rates r that are above
a lower bound; or, for a given value of r, when the number N of fishing units is below an
upper bound. Thus, the result (2.a) holds for ‘relatively high values’ of r and/or ‘relatively
low values’ of N . The result at (2.b) will hold for the opposite parametric value ranges.

Notice that the condition ‘β small enough’ in Proposition 4.4 implies the validity of one
of the two conditions needed for ensuring the existence and uniqueness of a positive steady-
state solution in this model (see Proposition 3.1). The second condition needed is r < F ′(0),
which defines an upper bound on r such that the stationary solution x(β) > 0. Given these
two conditions, the results in Part 2 of Proposition 4.4 then define value ranges for N , given
a function F (·), which determine whether the result (2.a) or (2.b) holds.

Indeed, considering r ∈ (0, F ′(0)) and a function F (·) satisfying the properties defined at
Section 2, the result (2.b) will hold for N/e > F ′(0) (which imposes a lower bound on N);
whereas the result (2.a) will hold for N/e < F (x′)/x′ (i.e., an upper bound on N), where x′

is the element such that F (x′) = max{F (x) : 0 < x < K} and K is the saturation constant
defined at Section 2. While for intermediate N values such that F (x′)/x′ < N/e < F ′(0),
the result (2.b) will then hold for sufficiently small values of r (near to zero), whereas the
result (2.a) will hold for higher values of r (indeed, near to F ′(0)).

Recall that a higher r implies a greater opportunity cost of (investing in) keeping an
additional unit of x at sea, which in turn implies, ceteris paribus, a social planner’s lower
demand valuation for investing in x. Thus, for higher values of r, the stationary solution for
x should be at a lower level, while the stationary optimal fishing effort u should be at a higher
level (keeping constant all other factors). Remember that the social planner’s valuation of
marginal investments in x is the value of the co-state variable λ. A similar ‘downwardly
effect’, on the social planner’s valuation of marginal investments in x, will be associated to
lower values of N (again keeping constant all other factors).

Therefore, the result (2.a) will hold for (N, r) pairs such that the social planner’s valuation
of marginal investments in x is relatively low (i.e., λ < p − c). While the result (2.b) will
hold for (N, r) pairs such that the social planner’s valuation of marginal investments in x is
relatively higher (λ > p − c); the latter case, due to a relatively larger N or a sufficiently
lower r.

If a fishery were to face an exogenously-driven change in its β parameter, it could be of
interest to know ex-ante not only how the equilibrium shadow price of the stock x would
change, but also how other key variables in the fishery would respond. Accordingly, in what
follows we analyse the equilibrium responses, to changes in parameter β, in the fishery’s
stationary catch, stationary fishing effort and the corresponding input’s marginal productiv-
ities.

Firstly, in the following proposition, relation dh
dβ

> 0 is proven at the equilibrium for
sufficiently small values of β:

5This term can be interpreted as the biological rate of return (per fishing unit) from marginal investment
in x, when x = xr.
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Proposition 4.5. For β positive near to zero, the equilibrium harvesting h(β) decreases
when β decreases.

Proof. See Appendix A.4.

Secondly, we also know by the result in Part 1 of Proposition 4.4 that, at the stationary
equilibrium, dx

dβ
> 0 for β positive near to zero. Thirdly, and again for β positive small

enough, it can be proved that, at the stationary equilibrium, d
dβ

(

∂h
∂x

)

> 0, as we establish in
the next proposition.

Proposition 4.6. For β positive near to zero, the marginal equilibrium harvesting ∂h
∂x

de-
creases when β decreases.

Proof. See Appendix A.5.

Therefore, for considered β, we know that a reduction in β will always reduce the steady
state levels of x and h. So, how can it then be that, for β near to zero, the sign of dλ

dβ
changes

as a function of a critical value for the parametric condition F (xr)/(Nxr) > 0? The answer
lies in the marginal effects of changes in β upon the stationary value of the fishing effort u.
The following Propositions and Corollaries provide the answer.

Proposition 4.7. The marginal harvesting productivity of u, at equilibrium, has the same
monotonicity properties that the shadow price when β varies. Indeed,

d

dβ

(

∂h

∂u
(x(β), λ(β))

)

=

(

Nc

(p − λ(β))2

)

dλ(β)

dβ
. (4.6)

Proof. See Appendix A.6.

Corollary 4.8. For β positive near to zero, we have that:

1. if ln
(

F (xr)
Nxr

)

+ 1 > 0 then d
dβ

(

∂h
∂u

)

< 0.

2. if ln
(

F (xr)
Nxr

)

+ 1 < 0 then d
dβ

(

∂h
∂u

)

> 0.

Proof. This is a direct consequence of Propositions 4.4 and 4.7.

Naturally, we are interested in the monotonicity properties described in Parts 1 and 2 of
Collorary 4.8 for the case when p > c, which is a necessary condition to obtain stationary
solutions of economic interest, i.e. where x(β), λ(β) and u(β) are all strictly positive (i.e.,
with λ < p). In this setting (β near to zero), the (N, r) pairs that guarantee the validity
of the result (2.a) in Proposition 4.4 also imply that the marginal productivity of fishing
effort u increases as β declines, all other factors remaining constant; while the opposite
effect on the marginal productivity of u prevails for (N, r) pairs such that the result (2.b) in
Proposition 4.4 is valid. Thus, for initial λ values such that λ < p− c, which are compatible
with relatively higher values of r and/or relatively lower values of N , the result in Part 1 of
Corollary 4.8 will prevail; and vice versa for the result in Part 2 of this Corollary.

The next Proposition 4.9 and its corresponding Corollary 4.10 describe the marginal
effect on the stationary solution u(β) as the value of β changes.
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Proposition 4.9. The limit of du
dβ

when β goes to zero is:

lim
β→0

du

dβ
=

F (xr)

N

(

ln

(

F (xr)

Nxr

)

−
rc

F ′′(xr)(p − c)xr

)

.

Proof. See Appendix A.7.

Corollary 4.10. For β positive near to zero, if F (xr)
Nxr

> 1, then du
dβ

> 0 and dλ
dβ

< 0.

Proof. The sign of du
dβ

is a direct consequence of Proposition 4.9. Indeed, the strict concavity

of F implies that F (xr)
N

(

ln
(

F (xr)
Nxr

)

− rc
F ′′(xr)(p−c)xr

)

> 0 whenever F (xr)
Nxr

> 1. The sign of dλ
dβ

is

trivially obtained from Proposition 4.4 because F (xr)
Nxr

> 1 implies that ln
(

F (xr)
Nxr

)

+1 > 0.

To examine the implications of the last two results, let us consider some specific paramet-
ric configurations. Firstly, consider intermediate values of N such that F (x′)/x′ < N/e <
F ′(0), where x′ is the element such that F (x′) = max{F (x) : 0 < x < K} and K > 0 is
the saturation constant. In this setting, we know that the result (2.b) in Proposition 4.4
will prevail for r sufficiently small (close to zero). Under these conditions, the result in
Proposition 4.9 implies du

dβ
< 0. Recall as well that for any (N, r) pair such that the result

(2.b) in Proposition 4.4 is valid, the marginal productivity of u will increase as β declines.
Therefore, for (N, r) pairs such that the social planner’s λ value is greater than p− c > 0, a
reduction in β will imply that the stationary solutions for λ and x will both decline, whereas
the stationary fishing effort will increase.

Secondly, let us keep the focus on any (N, r) pair such that the result (2.b) in Proposition
4.4 is valid, and suppose that the harvesting business is very profitable, in the sense that p−c
is large enough. In this case, the result in Proposition 4.9 will again imply du

dβ
< 0. Thus,

as long as the harvesting activity is very profitable, and the present value of the stream of
future profits is sufficiently large (given a relatively low value of r and/or a relatively large
value of N), the social planner’s optimal reaction to a lower value of β would be to reduce
its investment in x while also increasing the stationary fishing effort u.

Thirdly, let us now consider any given (N, r) pair such that all three stationary solutions
(x(β), λ(β), u(β)) are strictly positive, and suppose that (p − c) is positive but now small
enough. In this case, the result in Proposition 4.9 implies du

dβ
> 0, given the strict concavity

of function F (·). Therefore, when β declines and there are still profits to be made from
fishing x but the profit per unit of fishing effort is small enough, the social planner’s optimal
policy will again be to invest in a lower stationary x, but now also reducing the stationary
fishing effort level.

Finally, let us keep the focus on any (N, r) pair such that all three stationary solutions
(x(β), λ(β), u(β)) are strictly positive. Suppose now, for any given value of p > c, that r has
a ‘relatively high’ value, i.e. close enough to F ′(0), so that xr gets close to zero. In this case,
the Proposition 4.9 implies du

dβ
> 0. Thus, a lower value of β will induce a social planner’s

lower investment in stationary x as well as the choice of a lower stationary fishing effort u
(recall that with r close to F ′(0), the planner’s λ value will increase as β declines). In a
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consistent way, Corollary 4.10 states that du
dβ

> 0 will prevail for sufficiently high values of r

and/or sufficiently low values of N , such that F (xr)/Nxr > 1.

In Table 1 we provide a summary of the main derived results.

Parametric situation
dx
dβ

du
dβ

dh
dβ

d
dβ

(

∂h
∂u

)

d
dβ

(

∂h
∂x

)

F (xr)/(Nxr) > 1/e + ? + — +

F (xr)/(Nxr) < 1/e + ? + + +

F (xr)/(Nxr) > 1 + + + — +

Table 1: Summary of dependencies with respect to β: increasing (+) and decreasing (−).

5 Final Remarks

Empirical evidence on small pelagic fish stocks confirms the relevance of analyzing fishery
contexts with β positive but small enough. For these fish species, special emphasis should be
put on the effects of relatively stock-insensitive, or even declining, average harvesting costs
at reduced stock levels. Consistently, we have therefore focused on cases with β positive that
may even tend to zero, subject to α + β = 1.

Our modeling focus has been to study the sensitivity of a fishery’s stationary equilibrium
with respect to changes in β and, from the assumption α+β = 1, consequently with respect
to changes in α. The effects on stock, catch and fishing effort levels are described as functions
of relative values of biological growth, discount rates and the total number of fishing units, all
of which affect the fish stock’s scarcity value. To our knowledge, the analysis of a fishery’s
equilibrium response to changing values of β has not been sufficiently developed in the
bio-economic mathematical economic modeling of commercial fisheries, which has normally
assumed either linear (Schaefer type) harvest functions or, in very few cases, Cobb-Douglas
harvest functions with fixed (constant) values for β and α.

We believe it is important to develop further results and implications about the possible
effects from changing values of β on a fishery’s equilibrium and its properties, specially for
cases with 0 ≤ β < 1. Further analysis on this issue is not only justified because of its
particular relevance for small pelagic stocks, but as it can also help enlightening a range
of different policy issues (e.g., avoidance of fishing collapse; and regulatory choices between
using landing fees or harvest quotas) whose solution sets are conditioned by β-related effects.

We have studied a single species fishery equilibrium responses to changing values of β in
the context of a highly stylized, textbook-like, one-dimensional fish stock model. Its straight-
forward simplicity allows us to analyze the basic structure of these stationary equilibrium
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responses while also avoiding getting results whose intuitive reading may be obscured by
unenlightening technical details. Our analysis has focused on the case of α + β = 1 for two
main reasons. First, it is consistent with the empirical feature of relatively stock-insensitive
or even declining average harvesting costs at reduced stock levels. And second, because of
its simplicity and mathematical tractability.

Notice that the incentives for a more intensive exploitation of x as β declines become
even stronger under the assumption of α+β = 1, relative to the case of declining β (tending
to zero) and a given (fixed) α (also < 1). However, the latter case should only imply
quantitative differences with respect to our analysis; qualitative aspects, such as the type of
equilibrium and its convergence properties, would remain unaffected.

The social planner assumption is meant to imply that the harvesting problem is defined
independently from the ownership of the natural resource. That is why we assume that the
planner has full control over the harvesting of the resource. Thus, we ignore the analysis
of strategic interactions that can emerge in non-cooperative harvesting games arising as the
result of a common-pool resource.

To extend our line of discussion to fishery contexts with α ≥ 1 would imply interesting
qualitative differences with respect to our case. This variant would introduce interesting
complications such as multiple equlibria and their corresponding convergence trajectories
and resulting stability properties.

A Appendix: Proofs

A.1 Proof of Proposition 3.1

For the sake of simplicity, we denote the steady states of (2.8) by x∗ = x∗(β) and λ∗ = λ∗(β).
In order to prove the existence of (x∗, λ∗), let us define the following function

g(x) =
c

α

(

F (x)

Nx

)
β

α
(

β
F (x)

x
+ r − F ′(x)

)

+ F ′(x)p.

Note that

g(x) →
c

α

(

F ′(0)

N

)
β

α

(βF ′(0) + r − F ′(0)) + F ′(0)p, when x → 0.

This last limit is strictly greater than rp. On the other hand, g(K) = F ′(K)p < 0 < rp.
Therefore, there exists x∗ ∈ [0, K] such that g(x∗) = rp. Then, defining

λ∗ = p −
c

α

(

F (x∗)

Nx∗

)
β

α

,

it follows that (x∗, λ∗) is a steady state of (2.8) and relation (3.1) is satisfied.
We now proceed to prove that (x∗, λ∗) ∈ (xr, +∞)×(λβ, p). Note that, since F es strictly

concave, x = xr is the only point satisfying F ′(x) = r. Then, since F (xr) 6= 0 (otherwise
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F (x) < 0 for all x < xr close enough to xr which contradicts the positivity of F on [0, K]),
it necessarily holds that λ < p. Also, cases when x∗ = 0 or λ∗ = 0 are trivially discarded.
So, (x∗, λ∗) is a steady state if and only if

F (x∗)

Nx∗
= φα(λ∗) (A.1)

F ′(x∗) − r = Φ(λ∗), (A.2)

where the auxiliar function Φ is defined as follows

Φ(λ) =
βNφα(λ)(λ − p)

λ
. (A.3)

Notice that Φ has a minimum over (−∞, 0) at λm = −βp/(1 − β) (Indeed, Φ′(λ) <
0 when λ ∈ (−∞, λm) and Φ′(λ) > 0 when λ ∈ (λm, 0)). So, the hypotheses on F ′(0) and
the strictly concavity of F imply that

F ′(x∗) − r ≤ F ′(0) − r < F ′(0) < N((1 − β)p/c)
1−β

β < N(p/c)
1−β

β = Φ(λm),

which together with (A.2) discards the case when λ∗ < 0. Consequently, x∗ should be
necessarily strictly greater than xr, because otherwise left and right terms in equality (A.2)
have opposite signs.

We finally note that λ > λ̄β follows from the relations:

φα(λ̄β) =
F (x̄)

Nx̄
>

F (x∗)

Nx∗
= φα(λ∗)

where the inequality is due to the monotonicity of function x → F (x)/x, which is a conse-
quence of the strict concavity of F .

We finish this proof by showing the uniqueness of the steady state (x∗, λ∗). Consider two
steady states (x1, λ1) y (x2, λ2). Since functions x → F (x)/x and λ → φα(λ) are decreasing,
we have the following equivalences:

x1 ≤ x2 ⇔
F (x2)

Nx2
≤

F (x1)

Nx1
⇔ φα(λ2) ≤ φα(λ1) ⇔ λ1 ≤ λ2.

On the other hand, it is easy to verify that function Φ is increasing on (λ̄β, p). Consequently,
we also have the equivalences:

λ1 ≤ λ2 ⇔ Φ(λ1) ≤ Φ(λ2) ⇔ F ′(x1) ≤ F ′(x2) ⇔ x2 ≤ x1.

We thus conclude that x1 = x2 and λ1 = λ2.
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A.2 Proof of Proposition 4.1

For a given β ∈ (0, 1) such that there is only one equilibrium point (see Proposition 3.1), the
Jacobian matrix of the right-hand-side function of (2.8), at the steady state (x∗(β), λ∗(β)),
is given by

J(β) := J(x∗(β), λ∗(β)) =







F ′(x∗(β)) − F (x∗(β))
x∗(β)

αF (x∗(β))
β(p−λ∗(β))

−λ∗(β)F ′′(x∗(β)) r − F ′(x∗(β)) + F (x∗(β))
x∗(β)






. (A.4)

The determinant of J(β) is then computed as follows

det(J(β)) = A(β) −
B(β)

β
, (A.5)

where

A(β) :=

(

F ′(x∗(β)) −
F (x∗(β))

x∗(β)

) (

r −

(

F ′(x∗(β)) −
F (x∗(β))

x∗(β)

))

, (A.6)

B(β) := −λ∗(β)F ′′(x(∗β))
αF (x∗(β))

(p − λ∗(β))
. (A.7)

So, since F is strictly concave and λ(β) > 0, it follows that A(β) < 0 and B(β) > 0. We
thus obtain that det(J(β)) < 0, for all β such that assumptions of Proposition 3.1 hold true.
Hence, the implicit function theorem implies the existence of two continuously differentiable
mappings of β, simply denoted here by x(·) and λ(·) (the range sets of these functions are
obtained in Proposition 3.1), satisfying (4.1).

Since x(β) and λ(β) remain in the compact set C = [xr, K]× [0, p], in order to prove the
convergences of x(β) and λ(β), we only need to prove that any converging subsequence has
xr and p − c, respectively, as their limit points. Consider then any sequence βk converging
to zero, when k → +∞, such that x(βk) → x̃ and λ(βk) → λ̃ for some x̃ and λ̃ in C. Since
λ̄β → p − c when β → 0 (see Proposition 4.1), we can ensure that λ̃ ≥ p − c > 0. Moreover,
the first equation in (4.1) gives us the following relation:

λ(β) = p −

(

c

1 − β

) (

F (x(β))

Nx(β)

)
β

1−β

,

which implies that λ̃ = p − c provided that F (x̃) 6= 0.
Let us prove this claim. We argue by contradiction. Suppose that F (x̃) = 0, then we

obtain from (4.1) that λ̃(F ′(x̃) − r) = 0, and consequently F ′(x̃) = r. This holds only if
x̃ = xr (because, since F is strictly concave, x = xr is the only point satisfying F ′(x) = r).
However, this contradicts the fact that F (xr) 6= 0 (otherwise F (x) < 0 for all x < xr close
enough to xr which contradicts the positivity of F on [0, K]). Hence λ̃ = p − c. The second
equation in (4.1) allows us to conclude that x̃ = xr. The desired convergences of x(β) and
λ(β) are thus established.

Finally, the convergence of u(β) follows directly from equality (4.3).
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A.3 Proof of Proposition 4.4

From the implicit function theorem, the derivative of x(β) can be computed as follows

dx(β)

dβ
=

N

β det J(β)

[

−F (x(β))

Nx(β)

(

1

1 − β
ln

(

F (x(β))

Nx(β)

)

+ 1

)

{rx(β) − x(β)F ′(x(β)) + βF (x(β))}

− (1 − β)
F (x(β))2

Nx(β)

]

,

where J(β) := J(x(β), λ(β)) is the Jacobian matrix of the RHS of (2.8) at the steady
state (x(β), λ(β)). On the other hand, equation (A.5) established that det J(β) = A(β) −
B(β)/β < 0, for all β ∈ (0, 1), where A(β) and B(β) were described in (A.6) and (A.7),
respectively. By noting that

lim
β→0

A(β) =

(

r −
F (xr)

xr

)

F (xr)

xr

lim
β→0

B(β) = −(p − c)F ′′(xr)
F (xr)

c
,

we conclude β det J(β) → (p − c)F ′′(xr)
F (xr)

c
, when β → 0. This limit value is negative

because of the strict concavity of F . Therefore,

lim
β→0

dx(β)

dβ
= −

cF (xr)

F ′′(xr)(p − c)xr

> 0.

Analogously, from the implicit function theorem, the derivative of λ(β) can be computed
as follows

dλ(β)

dβ
=

N

β det J(β)

[

−F (x(β))

Nx(β)

(

1

1 − β
ln

(

F (x(β))

Nx(β)

)

+ 1

)

{λ(β)F ′′(x(β))x(β)

+ β

(

F ′(x(β)) −
F (x(β))

x(β)

)

(p − λ(β))} + β

(

F ′(x(β)) −
F (x(β))

x(β)

)

(p − λ(β))
F (x(β))

Nx(β)

]

.

Hence

lim
β→0

dλ(β)

dβ
= −c

[

ln

(

F (xr)

Nxr

)

+ 1

]

.

We have thus concluded (4.4) and (4.5).

Finally, from (4.4) and (4.5), we deduce that dx(β)
dβ

> 0 and that dλ(β)
dβ

has the opposite

sign of ln
(

F (xr)
Nxr

)

+ 1 when β is small enough. The proposition follows.
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A.4 Proof of Proposition 4.5

Propositions 4.1 and 4.4 imply that x(β) decreases to xr when β → 0. This in particular

implies that F ′(x(β)) > 0 and dx(β)
dβ

> 0 when β is small enough. Hence, we obtain from

(4.3) that
∂h(x(β), u(β))

∂β
= F ′(x(β))

dx(β)

dβ
> 0, for all β small enough.

A.5 Proof of Proposition 4.6

The partial derivative of h with respect to x is given by

∂h

∂x
(x, u) = Nβ

(u

x

)1−β

.

Therefore, at the equilibrium (x(β), u(β)), it holds that

∂

∂β

(

∂h

∂x
(x(β), u(β))

)

= N

(

u(β)

x(β)

)1−β (

1 − β ln

(

u(β)

x(β)

))

.

However, it follows from (4.2) that β ln
(

u(β)
x(β)

)

= β

α
ln

(

F (x(β))
Nx(β)

)

, which tends to 0 when β → 0.

We thus conclude that ∂
∂β

(

∂h
∂x

(x(β), u(β))
)

is positive when β is small enough.

A.6 Proof of Proposition 4.7

The partial derivative of h with respect to u is given by

∂h

∂u
(x, u) = αN

(x

u

)β

.

Then, at the equilibrium (x(β), u(β)), we obtain from (4.2) the expression

∂h

∂u
(x(β), u(β)) =

Nc

(p − λ(β))
,

and relation (4.6) is obtained by deriving the above equality with respect to β.

A.7 Proof of Proposition 4.9

Define the function ζ(β, x, u) = F (x) − Nu(1−β)xβ . From (4.3) we obtain that

ζ(β, x(β), u(β)) = 0 ∀ β ∈ (0, 1).

Deriving this equality with respect to β we obtain

∂βζ + ∂xζ
dx

dβ
+ ∂uζ

du

dβ
= 0. (A.8)
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It is straightforward to check that the partial derivatives of the function ζ are given by:

∂βζ =
Nu

α

(x

u

)β

ln

(

F (x)

Nx

)

∂xζ = F ′(x) − β
F (x)

x

∂uζ = −Nα
(x

u

)β

.

So, Proposition 4.1 implies that ∂βζ → F (xr) ln
(

F (xr)
Nxr

)

, ∂xζ → r, ∂uζ → −N when β → 0.

These limits, expression (4.4) for the limit of dx
dβ

when β → 0, and (A.8) give us the desired
result.
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