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Abstract

This paper studies how much information a Central Bank should release
to less informed private agents. Agents have dispersed information about the
state of the economy, and their actions are strategic complements. Thus, the
Central Bank’s public disclosure of information can generate an undesirable
coordination among agents and self-fulfilling crises. We show that the Central
Bank will choose an information structure that sends only two messages. We
characterize the optimal information structure and prove that it retains the
uniqueness equilibrium property of global games. We also show that, without
the ability to commit to an information disclosure rule, the Central Bank could
be worse o↵ by releasing public information.

⇤We thank Luis Araujo, Harold Cole, Dirk Krueger, Guillermo Ordonez and Alessandro Pavan
for helpful comments on earlier versions of this paper.
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1 Introduction

The e↵ectiveness of an economic policy largely depends on the behavior of private
agents. Public disclosure of information about a payo↵ relevant state can be used
to induce them to take actions aligned with the policy. When there is strategic com-
plementarity in the agents’ actions, public information has the additional feature
of allowing them to coordinate their actions, not necessarily in favor of the pol-
icy’s success. In this paper, we study how a Central Bank should publicly disclose
information in such coordination environments.

We address this question by introducing public communication in the model
of speculative currency attacks of Morris and Shin (1998). The exchange rate is
initially pegged and the Central Bank sends a credible public signal about the
fundamentals of the economy before speculators move. A continuum of privately
informed speculators decides whether to attack the currency or not. If su�ciently
many speculators attack, the Central Bank is forced to abandon the peg.

The speculators’ payo↵ of a successful attack depends on the unknown state of
fundamentals. There are two dominance regions in the space of fundamentals. If
fundamentals are weak, the Central Bank abandons the peg regardless of the size of
the attack, therefore attacking is a dominant strategy. If fundamentals are strong, a
successful attack is not profitable, which makes not attacking the dominant strategy.
In between the regions, attacking is only profitable if su�ciently many speculators
decide to do so.

The model without public information has a unique equilibrium, in which
speculators attack if their private signals are below a cuto↵. This result can be
explained with the aid of Figure 1 (a). The horizontal line at zero is the payo↵ to a
speculator who refrains from attacking the currency. We depict the expected payo↵
of attacking as a function of the speculator’s private signal, considering di↵erent
aggregate strategies. In blue, every speculator attacks the currency, regardless of
their private signals; in red, no speculator attacks. Neither strategy is possible in
equilibrium: for high signals (after the blue curve crosses zero), speculators prefer
not to attack even if everyone else attacks; for low signals (before the red blue
crosses zero), speculators prefer to attack even if no one else attacks. In black, we
depict the expected payo↵ to a speculator that attacks when the private signal is k
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Figure 1: Expected payo↵ of attacking the currency peg.

and every other speculator follows a strategy with cuto↵ k. When the black curve
crosses zero, we find the unique equilibrium of the model without public signals.
In this equilibrium, speculators follow a strategy with cuto↵ k

⇤.

In Figure 1 (b), we illustrate how the introduction of a public signal can generate
self-fulfilling crises. Suppose that the Central Bank announces that the state lies in
the interval (m1,m2). The curves in bold depict the expected payo↵s conditional on
the public information. Since the red curve is always below zero, it is not optimal
to attack if no one else is attacking. However, since the blue curve is always above
zero, a coordinated attack is now profitable regardless of the private signal. In
addition, we have that following a cuto↵ k

⇤ is still an equilibrium strategy for
speculators. Thus, such a public signal leads to multiple equilibria and attacks
based on self-fulfilling beliefs that other speculators are also attacking.

In Section 2, we model the public signal structure as a partition of the space
of fundamentals. The Central Bank chooses a partition and sends a public signal
that reveals the interval where the realized state lies. When a public signal leads
to multiple equilibria, as in Figure 1 (b), we assume that the Central Bank only
cares about its lowest equilibrium payo↵. We also assume that the Central Bank
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can commit to a disclosure policy before observing the state.

In Section 3, we present our main results. Our first result (Theorem 1) is
that, without loss of generality, the Central Bank chooses a two-signal structure.
The intuition for this result is as follows. For any partition choice, in the worst
equilibrium for the Central Bank, the peg is abandoned if and only if the realized
state is below certain threshold. We show that the Central Bank is not worse o↵ by
choosing a partition with only two signals, revealing whether the state is below or
above that threshold. Such a disclosure rule leads to a unique equilibrium, in which
speculators refrain from attacking above the threshold. This is the least costly way
for the Central Bank to maintain the peg in that region of fundamentals. A more
precise information structure opens up the possibility of multiple equilibria and
self-fulfilling crises.

We characterize the optimal partition for the Central Bank in Theorem 2, our
second main result. By Theorem 1, we can restrict attention to partitions that divide
the space of fundamentals into two regions, low and high. If fundamentals in the
high region are strong enough, the currency is not attacked in equilibrium. As the
Central Bank adds weaker fundamentals to this region, the possibility of a self-
fulfilling crisis eventually arises: not attacking is no longer the unique equilibrium
strategy for speculators. Thus, it is optimal for the Central Bank to expand the high
region as long as it does not induce attacks on the peg. The optimal partition leads
to a unique equilibrium, in which speculators perfectly coordinate their actions
based on the public signal, attacking only if the Central Bank announces the low
region. Intuitively, with the optimal signal structure the Central Bank exploits the
speculators’ coordination incentives to prevent attacks as often as possible.

We conclude Section 3 by showing that, if the Central Bank could fully dis-
close the fundamentals, it would not be optimal to do so. This would lead to a
coordinated attack at every state, except when not attacking is a dominant strat-
egy. In contrast, we have that the optimal partition prevents attacks beyond this
dominance region.

Section 4 presents a version of the model in which the Central Bank is unable
to commit ex-ante (before observing the state) to an information disclosure policy.
Without commitment, the Central Bank’s ability to change speculators’ posteriors
about fundamentals is limited by their endogenous beliefs. We show that, in
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equilibria where speculators have "pessimistic" beliefs, the Central Bank is forced
to fully disclose the state.

In Section 5, we present our conclusions. All proofs are presented in the Ap-
pendix.

Related Literature This paper is related to the literature on self-fulfilling crises
when payo↵s are not common knowledge. The idea that small deviations from
common knowledge can have a large impact on equilibrium outcomes dates back at
least to Rubinstein’s mail game (Rubinstein (1989)), and has gained great attention
since Carlsson and van Damme (1993) and Morris and Shin (1998).

We build on the model of Morris and Shin (1998) to introduce a public signal
that generates partial common knowledge. In di↵erent settings, the interaction
between public and private signals in coordination games has been studied in
Morris and Shin (2002), Hellwig (2002), Angeletos and Pavan (2007) and Angeletos
et al. (2007).

In particular, our paper contributes to the literature on the role of policy choices
in coordination games, as in Angeletos et al. (2006) and Angeletos and Pavan (2009,
2013). Breaking the uniqueness result in Morris and Shin (1998), Angeletos et al.
(2006) point out that policy interventions that convey some information about the
fundamentals allows for agents to coordinate their actions, which in turn may
lead to multiple equilibria. In our model, the Central Bank optimally chooses a
disclosure policy that leads to a unique equilibrium, in which agents perfectly
coordinate their actions.

This paper also relates to the literature on Bayesian persuasion pioneered by
Kamenica and Gentzkow (2011). They study the optimal signal structure from the
perspective of a sender who wants to influence a rational Bayesian receiver to take
the sender’s preferred action. We address this question of information design in the
context of a coordination model where the sender faces a continuum of privately
informed receivers. In a similar setting, Goldstein and Huang (2016) characterize
the optimal policy for a sender who is restricted to announcing a threshold state
of fundamentals below which the status quo is abandoned. In our model, this is
equivalent to restricting the Central Bank to sending only two signals.
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2 Model

2.1 Actions and payo↵s

We extend the benchmark model of currency attacks of Morris and Shin (1998)
by allowing the Central Bank to release a public signal about the fundamentals of
the economy. The state of fundamentals is represented by ✓, which is uniformly
distributed over [0, 1]. The exchange rate is initially pegged at e

⇤, and its value in
the absence of intervention is given by f (✓). We assume that f (·) is continuous and
strictly increasing, with e

⇤ � f (✓) for all ✓. A continuum of speculators of measure
one has to simultaneously to decide whether to attack the currency peg or not.

A speculator attacks the peg by selling short one unit of the currency at a cost
t > 0. If the speculator attacks and the peg is abandoned, his payo↵ is e

⇤ � f (✓) � t,
whereas the payo↵ from attacking when the currency is defended is �t. If the
speculator does not attack, then his payo↵ is zero.

The Central Bank derives a value v > 0 from maintaining the currency peg.
There is a cost c(↵,✓) to defend the peg, where ↵ is the mass of speculators who
attack the currency. The cost c(·, ·) is continuous, strictly increasing in ↵ and strictly
decreasing in ✓. Hence, the payo↵ from defending the peg is v � c(↵,✓), and the
payo↵ from abandoning the peg is zero. The following assumptions are made:

• c(0, 0) > v: the Central Bank abandons the peg if fundamentals are su�ciently
weak, even if no speculator attacks;

• c(1, 1) > v: the Central Bank abandons the peg if every speculator attacks,
even if fundamentals are strong;

• e
⇤ � f (1) � t < 0: it is not profitable for speculators to attack the currency if

fundamentals are strong.

Denote by ✓ the value of ✓ that solves v = c(0,✓). If ✓  ✓, the Central Bank
finds it optimal to abandon the peg regardless of the size of the attack. Denote by
✓̄ the value of ✓ such that e

⇤ � f (✓)� t = 0. If ✓ > ✓̄, attacking is not profitable even
if the peg is abandoned.
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We assume that ✓ < ✓̄.1 When the state is common knowledge, we can divide
⇥ in three intervals, as it has been pointed out in the literature:2

• if ✓ 2 [0,✓], the Central Bank always abandons the peg and attacking is a
dominant strategy;

• if ✓ 2 (✓, ✓̄], attacking is profitable only when many speculators attack;

• if ✓ 2 (✓̄, 1], it is never profitable to attack the peg.

2.2 Timing and information

The game has three stages. In the first stage, before observing ✓, the Central Bank
commits to a disclosure policy, which is announced to the speculators. In the second
stage, once ✓ is realized, a public signal y is sent according to the chosen disclosure
policy.3 Speculators do not observe ✓, just the public signal y and a private signal x.
Given x and y, speculators simultaneously decide whether to attack the currency
or not. In the last stage, the Central Bank observes ✓ and the size of the attack, and
decides whether to defend the currency or to abandon the peg. The structure of
the game is assumed to be common knowledge.

The Central Bank can partition the space of fundamentals and announce in
which interval the realization of✓ lies. We denote a partition of [0, 1] by P = {mn}Nn=0,
where 0 = m0 < ... < mn < ... < mN = 1, and N 2 N.4 The n-th interval of partition
P is denoted by yn, with

y1 = [0,m1], y2 = (m1,m2], ..., yn = (mn�1,mn], ..., yN = (mN�1, 1],

for N > 1. When the public signal y = yn is sent, it becomes common knowledge
that ✓ 2 yn. When N = 1, we let yN = [0, 1], which means that the public signal is
uninformative.

1 This condition holds for a large v and a small t.
2 See, for example, Obstfeld (1996).
3 In line with the Bayesian persuasion literature, an interpretation of the disclosure policy is that

an independent and credible Central Bank commits to an information acquisition procedure and to
publicly releasing its findings.

4 In this exposition, we restrict the analysis to partitions with a finite number of intervals. Our
results still hold if partitions can have a countable number of intervals.
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Given the assumption that the Central Bank commits to a choice of P before
learning the true state ✓, there is no strategic learning, i.e., the choice of P does not
change the speculators’ beliefs about what the Central Bank knows.5 In Section 4,
we show that commitment is essential for our results.

In addition to the public signal, speculator i observes a private signal xi, where

xi = ✓ + "i.

The idiosyncratic noise "i is drawn from a distribution with probability density
function g(·), and cumulative distribution function G(·). Each "i is independent
and identically distributed across agents, and independent of ✓. We assume that
supp("i) = [�", "], " > 0, and, as in Morris and Shin (1998), that 2" < min{✓, 1 � ✓̄}.

Since the common prior is uniform, the posterior distribution of ✓ given a
private signal x and a public signal y has probability density function �y(✓|x),
where6

�yn
(✓|x) =

8>><>>:

g(x�✓)
G(x�mn�1)�G(x�mn) , if ✓ 2 yn

0, otherwise
. (1)

2.3 Equilibrium

We solve this game by backward induction. In the last stage, given an attack of
size ↵ and a state ✓, the Central Bank optimally chooses to abandon the peg if
and only if c(↵,✓) � v. In the second stage, speculators observe the public signal
and their own private signals. Anticipating the Central Bank’s behavior in the last
stage, they simultaneously decide whether to attack the currency or not. In the first
stage, the Central Bank chooses a partition P. The multiplicity in the second stage
of the game poses a selection problem that we solve by assuming that the Central
Bank only cares about its lowest equilibrium payo↵. An equivalent assumption is
that that speculators play the equilibrium strategy that maximizes their own payo↵

5 This is in contrast to Angeletos et al. (2006).
6 There is a finite number of pairs (x, y) that fully reveal ✓: when y = yn and x = mn + ",

we have P(✓ = mn|y = yn, x = mn + ") = 1; likewise, when y = yn and x = mn�1 � ", then
P(✓ = mn�1|y = yn, x = mn�1 � ") = 1. For all other pairs (x, y), the conditional density of ✓ is given
by (1).
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(This equivalence follows from Lemmas 1 and 5 below.).

More formally, suppose that the Central Bank chooses a partition P = {mn}Nn=0.
Let pn = P(✓ 2 yn) be the probability that ✓ lies in the interval yn of the partition.7

In addition, consider the subgame that follows the disclosure of y = yn. Denote
by Vn the infimum of the Central Bank’s equilibrium payo↵s when y = yn.8 We let
V(P) =

P
N

n=1 pnVn. The Central Bank’s problem is to choose P in order to maximize
V(P).

The last stage of the game is straightforward. The Central Bank abandons the
peg at ✓ if the size of the attack is above a threshold a(✓). For ✓  ✓, a(✓) = 0, and
for ✓ > ✓, a(✓) is the solution to v = c(a,✓). Note that, given our assumptions on
c(·, ·), we have that a(·) is continuous in ✓ and strictly increasing if ✓ > ✓.

We restrict attention to symmetric equilibria. A strategy for a speculator is a
function⇡ such that, for each pair of signals (x, y),⇡(x, y) determines the probability
of attacking the currency. When all speculators follow ⇡(·, ·), the size of the attack
at ✓ is given by

s(✓,⇡) =
Z ✓+"

✓�"
⇡(x, y(✓))g (x � ✓) dx.

where y(✓) is the public signal sent according to P. Thus, the event in which the
peg is abandoned is given by

A(⇡) = {✓ : s(✓,⇡) � a(✓)},

and the expected payo↵ from attacking the currency given a pair of signals (x, yn)
is9

uyn
(x,⇡) =

Z

[x�",x+"]\A(⇡)
[e⇤ � f (✓)]�yn

(✓|x)d✓ � t. (2)

In equilibrium, ⇡(x, y) = 1 if uy(x,⇡) > 0, and ⇡(x, y) = 0 if uy(x,⇡) < 0.

7 Since we assume that ✓ is uniformly distributed over [0, 1], we have pn = mn �mn�1.
8 Such infimum always exists as the Central Bank always has the option to abandon the peg, so

the equilibrium payo↵ is bounded below by 0.
9 Equation (2) holds for all but a finite number of pairs (x, y), as described in footnote 6. For the

sake of brevity, in the remainder of the paper we omit these finite number of cases.
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2.4 Equilibrium properties

We now present some auxiliary results. The first result shows that, if speculators
are more likely to attack the currency for every private signal x, then the payo↵
from attacking increases.

Lemma 1. For a given public signal y, if ⇡(x, y) � ⇡0(x, y) for all x, then uy(x,⇡) �
uy(x,⇡0) for all x.

Proof: See Appendix A.1. ⇤

For k 2 [�", 1 + "], let the indicator function Ik be defined as

Ik(x) =

8>><>>:
1, if x < k

0, if x � k
.

When aggregate short sales are given by Ik (in particular, they do not depend on
the public signal y), the proportion of speculators who attack the currency at state
✓ is given by

s(✓, Ik) = G (k � ✓) . (3)

Note that s(✓, Ik) is strictly decreasing in ✓ for ✓ 2 (k � ", k + "), and constant
otherwise.

We denote by ✓k the largest value of ✓ at which the Central Bank finds it optimal
to abandon the peg when short sales are given by Ik. As in Morris and Shin (1998), let
 (k) = min{✓k�k, "}. Appendix A.2 provides a derivation of ✓k and (·). Threshold
✓k is increasing in k, and the Central Bank finds it optimal to abandon the peg for
all ✓  ✓k. Function  (·) is continuous,  (k) = " for k  ✓ � ",  (1 + ") = �", and
 (·) is strictly decreasing for k 2 (✓ � ", 1 + ").

Let Xy denote the set of possible private signals when the public signal is y, i.e.,
Xy1 = [�",m1 + "] and, for n > 1, Xyn

= (mn�1 � ",mn + "]. Since the currency peg is
abandoned if and only if ✓ 2 [0, k +  (k)], the payo↵ function uyn

(k, Ik) is given by

uyn
(k, Ik) =

Z
k+ (k)

k�"
[e⇤ � f (✓)]�yn

(✓|k)d✓ � t, (4)

for all k 2 Xyn
.
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Lemma 2. The payo↵ function uyn
(k, Ik) is continuous in k, for all k 2 Xyn

.

Proof: See Appendix A.3. ⇤

Let u(k, Ik) be the payo↵ function when there is no public signal. Then

u(k, Ik) =
Z

k+ (k)

max{k�",0}
[e⇤ � f (✓)]

g (x � ✓)
G (x) � G (x � 1)

d✓ � t, (5)

Note that the payo↵ function is continuous in k. The following lemma shows that
it is also strictly decreasing in k.

Lemma 3. For k 2 (", 1 � "), the payo↵ function u(k, Ik) is strictly decreasing in k.

Proof: See Appendix A.4. ⇤

3 Optimal signal structure

This section presents the results of the model with commitment when, in case of
multiplicity after a partition choice, the Central Bank only cares about its lowest
equilibrium payo↵.10 First, we show that there is no loss of generality in considering
partitions with at most two intervals (subsection 3.1). We then characterize the
optimal partition for the Central Bank (subsection 3.2) and comment on our results
(subsection 3.3).

3.1 No loss of generality in two-interval partitions

Cuto↵ strategies will play an important role in our results. In order to characterize
the speculators’ payo↵s when a cuto↵ strategy is used, we make the following
assumption:

Assumption 1. Let the public signal be y. For any pair of private signals x1 and x2,

with x1 < x2, �y(✓|x2)  �y(✓|x1) for all ✓, where �y(✓|x) is the cumulative distribution

function of ✓ conditional on signals x and y.

10 When there is no ambiguity, we say equilibrium when we mean the equilibrium of the subgame
that follows the choice of P.
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This assumption means that the distribution of ✓ conditional on y and x2 first-
order stochastically dominates the distribution of ✓ conditional on y and x1. In
the online Appendix, we show that Assumption 1 is satisfied, for example, if the
idiosyncratic noise on [�", "] follows a concave or a truncated normal distribution.
Assumption 1 leads to the following lemma.

Lemma 4. Suppose that Assumption 1 is satisfied. When the aggregate strategy is given

by Ik, the payo↵ from attacking the currency, uy(x, Ik), is decreasing in the private signal x.

Proof: See Appendix A.5. ⇤

A consequence of Lemma 4 is that if uy(k, Ik) = 0, then following Ik is an equi-
librium strategy for speculators that observe the public signal y. As we the next
lemma shows, characterizing the Central Bank’s payo↵ will be closely related to
the existence of cuto↵ strategies for each realization of the public signal.

Lemma 5. For a given public signal y,

i. if uy(k, Ik) < 0 for all k 2 Xy, then, in any equilibrium, ⇡(x, y) = 0 for all x 2 Xy.

ii. if uy(k0, Ik0) � 0 for some k
0 2 Xy, then, in the worst equilibrium for the Central

Bank, speculators use the cuto↵ rule Ik after observing y, where k = sup{k0 2 Xy :
uy(k0, Ik0) � 0}.

Proof: See Appendix A.6. ⇤

Recall that ✓̄ defines the threshold ✓ above which investors’ payo↵ from a suc-
cessful attack is negative. We characterize the equilibrium strategy that minimizes
the Central Bank’s payo↵ in the proposition below, which follows directly from
Lemma 5.

Proposition 1 (Strategies in the worst equilibrium for the Central Bank). Consider

a partition P = {mn}Nn=0. The equilibrium strategy that minimizes the Central Bank’s payo↵

is as follows: for all n such that mn  ✓̄, speculators always attack the currency if y = yn;

likewise, for all n such that mn�1 � ✓̄, speculators never attack the currency if y = yn.

Lastly, if n is such that mn�1 < ✓̄ < mn, speculators never attack if uyn
(k, Ik) < 0 for all

k 2 Xyn
; otherwise, speculators follow Ikn

after observing yn, where kn = sup{k0 2 Xyn
:

uyn
(k0, Ik0) � 0}.
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Proposition 1 provides the intuition as to why there is no loss of generality in
considering only two-interval partitions. If there are several n such that mn  ✓̄,
then the Central Bank can group all these yn into a single interval without changing
its payo↵. Likewise, if there are several n such that mn�1 � ✓̄, the Central Bank can
group these yn together. This implies that we can restrict attention to partitions
with at most three intervals.
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Figure 2: Two-signal structure without loss of generality. The curves depict the
payo↵ function uy(k, Ik).

Consider a partition P with three intervals, that is, P = {0,m1,m2, 1}, where
m1 < ✓̄ < m2. It follows from Proposition 1 that there is a cuto↵ k̂ = sup{k0 2
X(m1,m2] : u(m1,m2](k0, Ik0) � 0} such that, in the worst equilibrium for the government,
speculators attack the currency after observing y2 = (m1,m2] and x  k̂. This leads
to a threshold ✓

k̂
2 (m1,m2] such that the Central Bank abandons the peg if and only

if✓  ✓
k̂
. Cuto↵ k̂ and threshold✓

k̂
are depicted in Figure 2(a). The curves represent

the payo↵ functions uy(k, Ik), and we can see that uy2(k, Ik) crosses zero at the cuto↵
k̂. Now consider the alternative partition P

0 = {0,✓
k̂
, 1}, that leads to public signals

y
0
1 = [0, ✓̂k] and y

0
2 = (✓̂k, 1]. The payo↵ functions under partition P

0 are depicted
in Figure 2(b). We can prove that uy

0
1
(k, Ik) > 0 for all k, therefore speculators attack

the currency after observing y
0
1, and the peg is abandoned. However, we can
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also show that uy
0
2
(k, Ik) < 0 for all k, which implies that speculators refrain from

attacking after observing y
0
2. Thus, the peg is still abandoned if ✓  ✓

k̂
, but the

currency is defended at the lowest possible cost for ✓ > ✓
k̂
. Since it is cheaper for

the Central Bank to maintain the peg at P
0, this partition is preferred to P.This result

is formalized in Theorem 1 below .

In order to prove Theorem 1, we use Lemma 6 (in Appendix A.7), which is an
application of the law of total expectation. In that lemma, we show that moving
an interval of the partition to the right - that is, increasing the lower bound mn�1 or
the upper bound mn - will not increase the payo↵ u(mn�1,mn](k, Ik). This implies that
u(✓0,1](k, Ik) < 0 for all k 2 X(✓0,1]. By Proposition 1, there is no attack in (✓0, 1].

Theorem 1 (No loss of generality in two-interval partitions). For any partition

P = {mn}Nn=0 with N > 2, there exists P
0 = {m0

n
}N0
n=0 with N

0 = 2, such that V(P0) � V(P).

Proof: See Appendix A.8.

Theorem 1 allows us to restrict attention to partitions of two intervals. The
Central Bank will divide the state space [0, 1] into two regions, [0,m] and (m, 1],
and send two public signals. From now on, we denote the signals by yL = [0,m]
and yH = (m, 1] and refer to them as the low and the high public signals, respectively.

3.2 Characterization of the optimal signal structure

When N = 2, the Central Bank’s problem is equivalent to choosing m, such that
speculators will learn whether ✓  m or ✓ > m. Given the choice of m, they observe
the public signal y 2 {yL, yH}, drawn as follows:

y =

8>><>>:
yL, if ✓ 2 [0,m]
yH, if ✓ 2 (m, 1]

.

For the sake of exposition, let us consider the benchmark environment where
there is no public signal. As in Morris and Shin (1998), there is a unique equilibrium
where speculators use a cuto↵ strategy Ik⇤ , leading to a threshold ✓⇤ such that the
peg is abandoned if and only if ✓  ✓⇤. Now consider the choice of m = ✓⇤.
When speculators observe the high public signal yH = (✓⇤, 1], there cannot be an
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equilibrium where a speculator attacks: Lemma 6 implies uyH
(k, Ik)  u(k, Ik) < 0

for any k > k
⇤, and, by Lemma 5, the peg is maintained for ✓ > ✓⇤. Therefore,

there is no attack after speculators observe yH, the equilibrium is unique,11 and the
currency peg is abandoned if and only if ✓  ✓⇤, as in the equilibrium of the game
without a public signal.

A few observations are in order. First, note that no speculator attacks the
currency when ✓ > ✓⇤, whereas without the public signal some speculators would
still attack the currency for some ✓ > ✓⇤. Thus, the Central Bank is strictly better o↵
with the introduction of the public signal, since it minimizes the cost of maintaining
the peg. Moreover, speculators are also strictly better o↵ now that no one attacks
when peg is maintained, and that they only attack when the peg is abandoned.

Note that choosing m > ✓⇤ is strictly dominated by m = ✓⇤, since a higher m

increases the region where the peg is abandoned, or it makes it more costly to
defend the peg (or both). To see this, recall that Lemma 6 implies that uyL

(k⇤, Ik⇤) �
u(k⇤, Ik⇤) = 0. Therefore, speculators will use a cuto↵ strategy in yL that will lead to
a threshold above ✓⇤. Any improvement over m = ✓⇤ must be in the direction of
reducing m.

Starting from m = ✓⇤, as m decreases, the Central Bank is strictly better o↵
as long as the equilibrium is still unique: decreasing m will increase the range
of fundamentals where the peg is not attacked. However, reducing m also leads
to an increase in uyH

(k, Ik), and eventually it will cross 0 from below for some
k 2 XyH

. When this happens, there is an equilibrium with speculators attacking in
yH, making the Central Bank worse o↵. Thus, the Central Bank wants to reduce m

up to the limit where the equilibrium is still unique. This result is formalized in
Theorem 2.

Define M as

M = {m : in any equilibrium, there is no attack if ✓ 2 yH = (m, 1]}.
11 We already argued that there is no attack in yH. We show in Lemma 7 in Appendix A.9 that

there is a unique equilibrium if y = yL, where the peg is abandoned.
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Note that M , ; because ✓ 2M. Define m as

m = inf M.

Theorem 2 (Optimal partition). V(P)  V for any partition P, where

V = lim
m#m

V(Pm),

and thus the Central Bank can achieve a payo↵ arbitrarily close to V.

Proof: See Appendix A.11. ⇤

As argued above, the Central Bank reduces m as long as there are no attacks in
(m, 1]. It turns out that, for a su�ciently small m 2M, the equilibrium is also unique
if y = yL, when every speculator attacks the peg. Therefore, speculators coordinate
their actions using the public signal, attacking if and only if they observe yL.

Note that an equilibrium only exists if m 2 M. However, the Central Bank can
achieve a payo↵ arbitrarily close to V and, for m close enough to m, speculators
always coordinate on the public signal. Thus, in the next subsection, we abstract
from this existence issue and, when referring to the optimal partition, we mean a
partition P

m with m close to m.

3.3 Discussion

In this section we discuss our two main results, Theorem 1 and Theorem 2. In
Theorem 1, we show that, despite having access to a broad message space, the
Central Bank cannot improve upon a simple two-signal rule. The key to this result
is that committing to such a disclosure rule leads to a unique equilibrium, whereas
a more informative communication strategy generates multiple equilibria, some of
which have worse outcomes for the Central Bank. In Theorem 2, we characterize
the optimal two-interval partition and show that the Central Bank sets m as low as
possible, up to the limit where not attacking is the unique equilibrium action for
speculators when y = yH.

The first observation we make is that the optimal signal can be interpreted
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as a recommendation from the Central Bank to speculators about which action
they should take. Indeed, yL could be interpreted as an ”attack” recommendation,
whereas yH means ”do not attack”. Naturally, in equilibrium, those recommen-
dations are followed by speculators. Interestingly, speculators ignore their own
private signal.

In order to improve beliefs about the fundamentals when y = yH, the Central
Bank commits to acknowledging bad states, i.e., ✓  m. By disclosing that fun-
damentals are bad and allowing for a coordinated attack if y = yL, the Central
Bank is able to pool intermediate and good states together, minimizing the cost
of defending the peg in yH. The optimal threshold will be the lowest m such that
expectations about ✓ are good enough to prevent an attack if y = yH. Reducing m

any further opens up the possibility of self-fulfilling crises, even if the public signal
is yH. Self-fulfilling crises may arise because, in our model, there is a continuum
of speculators and their actions are strategic complements. This feature of our
model distinguishes this paper from standard Bayesian persuasion models (e.g.,
Kamenica and Gentzkow (2011)).

Even though it is without loss of generality to assume that N = 2, the Central
Bank could be arbitrarily precise when fundamentals are bad. It is only when
fundamentals are “not too bad” that the Central Bank must be vague, since, as
long as yH remains the same, its payo↵ does not change. This vagueness is used
by the Central Bank to make speculators uncertain about whether the state is
intermediate (✓ 2 (m, ✓̄), where a coordinated attack is profitable) or good (✓ � ✓̄,
where attacking is never profitable), thus preventing them from attacking.

Another characteristic of our equilibrium is that it is Pareto e�cient. This hap-
pens because the public signal allows for perfect coordination among speculators.
In contrast, the game without public information is not Pareto e�cient since there
are ✓ at which some speculators attack the currency but the Central Bank defends
the peg.

We conclude this section by showing that, even if the Central Bank could fully
disclose the state, it would not be optimal to do so. If the state is fully revealed,
speculators can coordinate on attacking whenever ✓ < ✓̄. Since m < ✓̄ (see Lemma
8, Appendix A.10), there exists m 2 M \ (m, ✓̄) such that partition P

m = {0,m, 1} is
strictly preferred to full disclosure. With partition P

m, the Central Bank eliminates
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currency attacks between (m, ✓̄). This proves the following proposition.

Proposition 2 (Full disclosure). Full disclosure of the state is not an optimal policy for

the Central Bank.

4 No commitment

In this section, we drop the assumption that the Central Bank can commit to a
disclosure policy. Without commitment, the Central Bank chooses the public signal
after observing the realized state ✓. For simplicity, the Central Bank’s strategy in
the last stage of the game is taken as given.

The game between Central Bank and speculators becomes a signaling game,
where ✓ can be interpreted as the Central Bank’s type. A strategy for the Central
Bank is a function y : ⇥ ! ⇥2 such that when the state is ✓, the public signal is
y(✓) = [y(✓), y(✓)].12 As before, we require that y(✓)  ✓  y(✓) for all ✓.

A strategy for speculators is a function that gives, for every private signal x and
every public signal ŷ = [ŷ, ŷ], the corresponding action to be taken (either to attack
or not). As before, let ⇡(x, ŷ) be the aggregate selling strategy. The equilibrium
concept in this section is the Perfect Bayesian Equilibrium (PBE) with symmetric
strategies for the speculators.

Definition. The strategy profile (y,⇡) is a PBE if

1. for all ✓ 2 [0, 1], y(✓) maximizes the Central Bank’s payo↵ given ⇡;

2. for every pair of signals (x, ŷ), there exist beliefs µx,ŷ about ✓ such that ⇡(x, ŷ)
maximizes the speculator’s expected payo↵ given µx,ŷ and the aggregate
strategy ⇡;

3. for each signal ŷ such that {✓0 : y(✓0) = ŷ} , ;, µx,ŷ(✓) is given by Bayes’ rule,
conditional on x and y(✓) = ŷ;

12 The restriction to closed intervals is made only for simplicity.
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4. for each signal ŷ such that {✓0 : y(✓0) = ŷ} = ;,

support(µx,ŷ(✓)) ⇢ [x � ", x + "] \ ŷ.

Consider the following profile of (y,⇡, µ):

y(✓) ={✓}, 8✓,

µx,ŷ(✓) =

8>><>>:
1, if ✓ = max{x � ", ŷ}
0, otherwise

⇡(x, ŷ) =

8>><>>:
1, if max{x � ", ŷ}  ✓̄
0, otherwise

.

We claim that this profile is an equilibrium. In this equilibrium, the public
signal reveals the true state of the fundamentals, and speculators attack if and only
if ✓  ✓̄.

To see that (y,⇡) is in fact an equilibrium with beliefs µ, first note that µ satisfies
both conditions 3 and 4 of the definition. Now consider speculator i’s problem.
If ŷ = ŷ = ✓, given that speculators follow ⇡, it is only profitable for i to attack if
ŷ  ✓̄, which means that ⇡ is optimal on the path of play. Now consider o↵ path

signals where ŷ < ŷ. When ŷ > ✓̄, speculators know that ✓ > ✓̄ and attacking is
indeed not profitable. If ŷ  ✓̄ and speculator i receives a private signal xi  ✓̄ + ",
he believes that ✓ = max{x � ", ŷ}  ✓̄. The speculator also believes that everyone
else received a private signal below ✓̄ + ", and that, following ⇡, they all attack.
Hence, attacking is profitable. Finally, if ŷ  ✓̄ and xi > ✓̄+ ", the speculator knows
that ✓ > ✓̄, and it is not profitable to attack. Therefore, ⇡ is optimal for i, given µ,
y, and that every other speculators follow ⇡.

Now we show that the Central Bank has no profitable deviation from strategy
y. Since the peg is not attacked on (✓̄, 1], there can only be a profitable deviation
at ✓0 if ✓0  ✓̄. However, according to ⇡, speculators still attack the peg whenever
they observe a public signal ŷ, with ✓0 2 ŷ. This proves that there is no profitable
deviation for the Central Bank and that y is optimal.

The PBE above passes the intuitive criterion of Cho and Kreps (1987). As
argued above, only types in [0, ✓̄] could benefit from a deviation. However, if the
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speculators know that ✓  ✓̄, they can coordinate on attacking the currency peg
and, in this case, a deviation is not profitable.

This example stresses the importance of commitment when the public signal al-
lows for agents to coordinate on an action that, from the Central Bank’s perspective,
is undesirable. When the Central Bank is unable to commit to a disclosure policy,
speculators can exploit the fact that types ✓ > ✓̄will reveal themselves. In this case,
speculators are able to coordinate on attacking the currency peg whenever ✓  ✓̄.
The results are summarized in the following proposition.

Proposition 3 (No commitment). Suppose that the Central Bank cannot commit to a

disclosure policy. Then, in the worst equilibrium for the Central Bank speculators coordinate

on attacking the currency for all ✓  ✓̄. With commitment, the Central Bank can avoid

attacks on (m, ✓̄].

5 Conclusion

This paper studies how a Central Bank should disclose information when facing
agents who can use public signals to coordinate their actions. In this setting,
the optimal communication policy must steer coordination in the right direction,
inducing agents to take the Central Bank’s preferred action as often as possible and
reducing the likelihood of self-fulfilling crises. We illustrate this problem with a
model of currency attacks, but our framework is suited to analyze a much broader
set of coordination games.

Our first finding is that the Central Bank chooses an information structure
with only two signals, high and low. In equilibrium, the currency peg is only
abandoned after the low signal is sent. The key to this result is that such a vague
policy can guarantee the uniqueness of equilibrium, setting a lower bound for the
Central Bank’s payo↵. In contrast, more precise communication leads to multiple
equilibria and the possibility of undesirable outcomes.

Intuitively, the low signal is an acknowledgment that fundamentals are too bad
for the peg to be maintained, while the high signal indicates that the currency
will be defended. We show that the optimal policy is to increase the number of
states associated to the high signal while preserving the uniqueness of equilibrium,
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i.e., as long as agents still find it optimal to follow the recommendation conveyed
by the public signal. Thus, under the optimal policy, agents perfectly coordinate
their actions. Such a policy leads to Pareto e�ciency, since agents only attack the
currency when the peg is abandoned.

We also show that the lack of commitment can e↵ectively make the Central
Bank hostage to the agents’ beliefs. When agents are pessimistic, the Central Bank
has to fully disclose the best states of fundamentals in oder to keep the peg. This
allows agents to coordinate on attacking the currency for every state in which a
coordinated attack is profitable.

A Appendix

A.1 Proof of Lemma 1

Lemma 1. For a given public signal y, if ⇡(x, y) � ⇡0(x, y) for all x, then uy(x,⇡) �
uy(x,⇡0) for all x.

Proof: Suppose that ⇡(x, y) � ⇡0(x, y) for all x. Then

s(✓,⇡) � s(✓,⇡0)) A(⇡) \ y ◆ A(⇡0) \ y) uy(x,⇡) � uy(x,⇡0).

⇤

A.2 Derivation of  

For k 2 [�", 1 + "], define ✓k as

✓k = sup{✓ : s(✓, Ik) � a(✓)}. (6)

✓k is the largest value of ✓ at which that the Central Bank finds it optimal to
abandon the peg when speculators’ aggregate short sales are given by Ik. Since
s(·, Ik) is decreasing and a(·) is increasing, the Central Bank abandons the peg if and
only if ✓  ✓k. Given that a(✓) = 0 for ✓  ✓, the set on the right hand side of (6) is
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never empty and ✓k is well defined. Moreover, we have that ✓k � ✓ for all k.

Define k̄ as the unique value of k that solves

s(1, Ik) = G (k � 1) = a(1),

that is, k̄ = 1+G
�1(a(1)). If speculators follow the cuto↵ rule Ik̄, the peg is abandoned

for every realization of ✓. Since s(✓, Ik) is increasing in k, we then have that ✓k = 1,
for all k � k̄.

Now suppose that speculators follow the cuto↵ rule Ik, with k  ✓ � ". In this
case, there are no attacks when ✓ > ✓, which implies that ✓k = ✓.

Finally, if k 2 (✓ � ", k̄), then ✓k is the unique value of ✓ that solves

s(✓, Ik) = G (k � ✓) = a(✓). (7)

Note that ✓  ✓ cannot be a solution to the equation above, since the left hand side
of (7) is strictly positive, while the right hand side equals 0. Thus, ✓k > ✓. For
✓ > ✓, we have that a(✓) is strictly increasing, thus ✓k is strictly increasing in k. In
addition, a(✓) 2 (0, 1) implies that ✓k 2 (k � ", k + "). Note that ✓k is continuous in k

for all k 2 [�", 1 + "].

Define the function  as  (k) = min{✓k � k, "}, for k 2 [�", 1 + "]. Thus

 (k) =

8>>>><>>>>:

", if k  ✓ � "
�G

�1(a(✓k)) 2 (�", "), if k 2 (✓ � ", k̄)
1 � k 2 [�", "), if k > k̄

. (8)

From the continuity of ✓k, it follows that  (k) is continuous. Since ✓k is strictly
increasing for k 2 (✓ � ", k̄), then  (k) is strictly decreasing for k > ✓ � ".

A.3 Proof of Lemma 2

Lemma 2. The payo↵ function uyn
(k, Ik) is continuous in k, for all k 2 Xyn

.
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Proof: Using (4), the payo↵ function when y = yn is given by

uyn
(k, Ik) =

Z
byn

ayn

[e⇤ � f (✓)]�yn
(✓|k)d✓ � t, (9)

where ayn
= max{k � ",mn�1}, and byn

= max{min{k +  (k),mn},mn�1}. Since �yn
(·|k)

and the limits of integration are continuous in k (because (·) is continuous), uyn
(k, Ik)

is continuous in k. ⇤

A.4 Proof of Lemma 3

Lemma 3. For k 2 (", 1 � "), the payo↵ function u(k, Ik) is strictly decreasing in k.

Proof: For k 2 (", 1 � "),

u(k, Ik) =
Z

k+ (k)

k�"
[e⇤ � f (✓)]g (k � ✓) d✓ � t =

Z "

� (k)
[e⇤ � f (k � "̃)]g("̃)d"̃ � t.

Since  (·) is decreasing and f (·) is strictly decreasing, we have that u(k, Ik) is strictly
decreasing in k. ⇤

A.5 Proof of Lemma 4

Lemma 4. Suppose that Assumption 1 is satisfied. When the aggregate strategy is given

by Ik, the payo↵ from attacking the currency, uy(x, Ik), is decreasing in the private signal x.

Proof: Suppose that the aggregate strategy is given by Ik. Let I(✓) be an indicator
function that equals 1 if the currency peg is abandoned when the state is ✓. Since,
by assumption, speculators follow a cuto↵ rule, I(✓) is weakly decreasing in ✓.13

Define
U(✓) = [ f (✓) � e

⇤]I(✓),

which is negative and increasing. Consider a public signal y and a pair of private
13 I(✓) = 1, if ✓  ✓k; and I(✓) = 0, if ✓ > ✓k.
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signals x1 and x2, with x1 < x2. Then

Z 1

0
U(✓)d�y(✓|x2) �

Z 1

0
U(✓)d�y(✓|x1),

where the inequality comes from Assumption 1 and the fact that U is increasing.
Hence

uy(x1, Ik) = �
Z 1

0
U(✓)d�y(✓|x1) � t

� �
Z 1

0
U(✓)d�y(✓|x2) � t

= uy(x2, Ik),

which completes the proof. ⇤

A.6 Proof of Lemma 5

Lemma 5. For a given public signal y,

i. if uy(k, Ik) < 0 for all k 2 Xy, then, in any equilibrium, ⇡(x, y) = 0 for all x 2 Xy.

ii. if uy(k0, Ik0) � 0 for some k
0 2 Xy, then, in the worst equilibrium for the Central

Bank, speculators use the cuto↵ rule Ik after observing y, where k = sup{k0 2 Xy :
uy(k0, Ik0) � 0}.

Proof: i. Suppose that uy(k, Ik) < 0 for all k 2 Xy. Let ⇡ be a equilibrium strategy,
and suppose by way of contradiction that there is x 2 Xy such that ⇡(x, y) > 0. If
this is true, then the set {x0 2 Xy : ⇡(x0, y) > 0} is non-empty and we can define x̄y as

x̄y = sup{x0 2 Xy : ⇡(x0, y) > 0}.

Note that x̄y 2 Xy because Xy is right-closed. Also note that, if ⇡ is an equilibrium
strategy, then for any x

0 such that ⇡(x0, y) > 0, it has to be true that uy(x0,⇡) � 0. By
the continuity of uy in the private signal, uy(x̄y,⇡) � 0. From Lemma 1,

uy(x̄y, Ix̄y
) � uy(x̄y,⇡) � 0,
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which contradicts the assumption that uy(k, Ik) < 0 for all k 2 Xy.

ii. If u(k, Ik) > 0, by continuity (Lemma 2), it has to be true that k is the right
bound of the interval Xy and, by the decreasing property of uy in the private signal
(Lemma 4), Ik is an equilibrium strategy. If u(k, Ik) = 0, then we know from Lemma 4
that Ik is an equilibrium strategy. Now it is left to show that any equilibrium strategy
⇡ features ⇡(x, y) = 0 for x > k. Assume by way of contradiction that there is an
equilibrium with⇡(x, y) > 0 for some x > k. Let x̄y = sup{x0 2 Xy : ⇡(x0, y) > 0} 2 Xy.
By Lemma 1, uy(x̄y, Ix̄y

) � uy(x̄y,⇡) � 0, which contradicts the assumption that k is
the supremum of the set {k0 2 Xy : uy(k0, Ik0) � 0}.

A.7 Lemma 6

Lemma 6. Suppose that y = yn and that speculators follow Ik, for k 2 Xyn
. The payo↵

function uyn
(x, Ik) is continuous in both mn�1 and mn. Furthermore, it is decreasing in

mn�1 for k < mn�1 + ", and constant otherwise; it is also decreasing in mn for k > mn � ",

and constant otherwise.

Proof: We want to show that uyn
is decreasing in both mn�1 and mn.

Fix mn�1 and consider a change from mn to m
0
n
> mn. Recall that, when agents

are using a cuto↵ strategy,
�
e
⇤ � f (✓)

�I(✓) is a decreasing function of ✓, where I(·)
is the indicator function that equals 1 if the peg is abandoned. For x > mn � ", we
have

u[mn�1,m0n](x, Ik) + t

= E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn�1,m0n], x]
⇤

= E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn�1,mn], x
⇤

P(✓ 2 [mn�1,mn]|✓ 2 [mn�1,m0n], x)

+ E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn,m0n], x
⇤

P(✓ 2 [mn,m0n]|✓ 2 [mn�1,m0n], x)

< E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn�1,mn], x
⇤

P(✓ 2 [mn�1,mn]|✓ 2 [mn�1,m0n], x)

+ E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn�1,mn], x
⇤

P(✓ 2 [mn,m0n]|✓ 2 [mn�1,m0n], x)

= E
⇥�

e
⇤ � f (✓)

�I(✓)|✓ 2 [mn�1,mn], x
⇤

= u[mn�1,mn](x, Ik) + t,
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that is, uyn
(x, Ik) is decreasing in mn. For x  mn � ", we have

P(✓ 2 [mn,m0n]|✓ 2 [mn�1,m0n], x) = 0,

therefore uyn
(x, Ik) is constant in mn. Analogous reasoning shows that uyn

(x, Ik) is
decreasing in mn�1, for x < mn�1 + ", and constant otherwise. Regarding continuity,
note that the payo↵ function is given by

uyn
(x, Ik) =

Z min{x+",mn}

max{x�",mn�1}

⇥
e
⇤ � f (✓)

⇤I(✓)
g (x � ✓)

G (x �mn�1) � G (x �mn)
d✓ � t,

which is continuous in both mn�1 and mn. ⇤

A.8 Proof of Theorem 1

Theorem 1. For any partition P = {mn}Nn=0 with N > 2, there exists P
0 = {m0

n
}N0
n=0 with

N
0 = 2, such that V(P0) � V(P).

Proof: Given Proposition 1, the only non trivial result left to show is that, for any
P = {0,m1,m2, 1}, with m1 < ✓̄ < m2, there is a P

0 = {0,m0, 1} such that V(P0) � V(P).

• Case 1: the Central Bank maintains the peg for all ✓ in y2. Consider the alternative
partition P

0 = {0,m1, 1}. The Central Bank cannot be worse o↵ if ✓  m1.

We know from Proposition 1 that u(m1,m2](k, Ik) < 0 for all k 2 X(m1,m2]. Since
m2 > ✓̄, we also know that u(m2,1](k, Ik) < 0 for all k 2 X(m2,1]. From Lemma 6 in
Appendix A.7,

u(m1,1](k, Ik)  u(m1,m2](k, Ik) < 0, for all k 2 (m1 � ",m2 + "],

and
u(m1,1](k, Ik) = u(m2,1](k, Ik) < 0, for all k 2 (m2 + ", 1 + "].

These inequalities imply that u(m1,1](k, Ik) < 0 for k 2 X(m1,1]. From Proposition
1, there is no attack if ✓ > m1. Thus, V(P0) � V(P).

• Case 2: the Central Bank abandons the peg for all ✓ in y2. Consider the partition
P
0 = {0,m2, 1}. The Central Bank is not worse o↵ if ✓  m2. If ✓ > m2,
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speculators observe the public signal (m2, 1], and since m2 > ✓̄, no one attacks.
Thus, V(P0) � V(P).

• Case 3: the Central Bank abandons the peg at some but not all ✓ in y2. From
Proposition 1, speculators follow a cuto↵ rule Ik2 after observing y2, where
k2 = sup{k0 2 Xy2 : uy2(k0, Ik0) = 0}. Given the speculators’ strategy, there exists
✓k2 2 (m1,m2] such that the peg is abandoned if and only if ✓  ✓k2 . Consider
partition P

0 = {0,✓k2 , 1}. From Lemma 6 ,

u(✓k2 ,1](k, Ik)  u(m1,m2](k, Ik) < 0, for all k 2 (k2,m2 + "],

and
u(✓k2 ,1](k, Ik) = u(m2,1](k, Ik) < 0, for all k 2 (m2 + ", 1 + "].

Thus, Ik cannot be an equilibrium strategy if k > k2. By Lemma 5, the Central
Bank maintains the peg if ✓ > ✓k2 . By changing the partition from P to P

0, the
Central Bank no longer has to pay a cost to defend the currency on (✓k2 ,✓k2+"),
therefore V(P0) > V(P).

⇤

A.9 Lemma 7

Lemma 7. Consider the game following the disclosure of y = yL. If m  ✓⇤, the equilibrium

is unique and the peg is always abandoned. If, in addition, m  ✓̄, then the equilibrium is

unique and the speculators coordinate on attacking the currency peg .

Proof: Using Lemma 3, the proof of existence and uniqueness of equilibrium in the
game without a public signal is analogous to the one in Morris and Shin (1998). The
speculators follow a cuto↵ strategy Ik⇤ , such that u(k⇤, Ik⇤) = 0, with k

⇤ 2 (", 1�"), and
the peg is abandoned for ✓  ✓k⇤ = ✓⇤. Since u(k, Ik) > 0 for k  ", and u(k, Ik) < 0
for k � 1� ", it follows from Lemma 3 that u(k, Ik) > 0 for k < k

⇤, and that u(k, Ik) < 0
for k > k

⇤.

Now we turn to the game with a public signal. Consider an equilibrium strategy
profile ⇡. Let ⇡(x, yL) denote the probability that a speculator attacks the currency
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given a private signal x and a public signal y = yL. Define x as 14

x = inf{x 2 XyL
: ⇡(x, y) < 1}.

Then, from Lemma 1,
uyL

(x, Ix)  uyL
(x,⇡)  0, (10)

where the last inequality comes from the fact that uy(x,⇡)  0 if ⇡(x, y) < 1, and
from the continuity of uy(x,⇡) in x.

From Lemma 6, we have that

uyL
(k, Ik) � u(k, Ik) > 0, for k < k

⇤.

Hence, (10) implies that x � k
⇤, and that ⇡(x, yL) = 1 for every x < k

⇤. This means
that, in equilibrium, the peg is abandoned for all ✓ 2 yL = [0,m] ✓ [0,✓⇤].

After observing y = yL, speculators know that peg is always abandoned in
equilibrium. Thus, a speculator who receives a private signal x attacks the currency
if and only if

E[e⇤ � f (✓) � t|x, yL] � 0,

and it follows that the equilibrium is unique. If m  ✓̄, attacking is always profitable
when y = yL, thus speculators coordinate on attacking the currency peg regardless
of their private signals. ⇤

A.10 Lemma 8

Lemma 8. m < ✓̄.

Proof: We need to find m < ✓̄ such that u(m,1](k, Ik) < 0 for all k. Consider the partition
P
✓̄ and let k̄ solve ✓k̄ = ✓̄.15 First we prove that there is a bound � < 0 such that

u(✓̄,1](k, Ik)  � for all k 2 X(✓̄,1]. Then we use continuity of u(m,1](k, Ik) in m to show
that there is an m below ✓̄ that belongs to M.

14 If ⇡(x, y) = 1 for all x 2 XyL
, then define x = sup XyL

.
15

a(✓̄) = s(✓̄, Ik̄), that is, if speculators follow the cuto↵ rule Ik̄, the Central Bank is indi↵erent
between defending the currency and abandoning the peg at ✓ = ✓̄.
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Let � = u(✓̄,1](k̄, I1+"). Note that � < 0 because of the definition of ✓̄. We claim that
u(✓̄,1](k, Ik)  � for all k 2 (✓̄ � ", 1 + "]. To see this, let k  k̄. If speculators follow Ik,
then the threshold for the Central Bank to abandon the peg is ✓k  ✓̄, which means
that the Central Bank does not abandon the peg on (✓̄, 1]. Hence u(✓̄,1](k, Ik) = �t < �

for any k  k̄. For k > k̄

u(✓̄,1](k, Ik)  u(✓̄,1](k, I1+")  u(✓̄,1](k̄, I1+") = �,

where the first inequality comes from Lemma 1, and the second inequality comes
from Lemma 4.Therefore, u(✓̄,1](k, Ik)  � for all k 2 X(✓̄,1], as claimed.

Define l
1
m

and l
2
m

as
l
1
m
= lim

k#k̄
u(m,1](k, I1+"),

and
l
2
m
= lim

k#✓̄�"
u(m,1](k, Ik̄).

Since u(✓̄,1](k, I1+")  � for all k > k̄, we have that l
1
✓̄
 �. Since u(✓̄,1](k, Ik̄)  � for

k 2 (✓̄ � ", k̄], we have that l
2
✓̄
 �. From Lemmas 1 and 4, l

1
m
� u(m,1](k, Ik) for k > k̄,

and l
2
m
� u(m,1](k, Ik) for k 2 (✓̄� ", k̄]. Then lm ⌘ max{l1

m
, l2

m
} � u(m,1](k, Ik) for k > ✓̄� ".

From Lemma 6, l
1
m

and l
2
m

are continuous in m, and so is lm. Hence, there exists
m
0 < ✓̄ such that lm0 < l✓̄ � �/2  �/2 < 0. This implies that u(m0,1](k, Ik)  �/2 for

k > ✓̄ � ". In this case, either u(m0,1](k, Ik) < 0 for all k 2 (m0 � ", ✓̄ � "], or there exists
k
0 = sup{k 2 (m0 � ", ✓̄ � "] : u(m0,1](k, Ik) � 0}. From Lemma 5, either there is no

attack on (m0, 1], thus m
0 2 M, or, in the worst equilibrium for the Central Bank,

speculators follow Ik0 after observing (m0, 1]. In the latter case, the Central Bank
abandons the peg for ✓  ✓k0 2 (m0, ✓̄). Consider the partition P

✓k0 . From Lemma 6,
u(✓k0 ,1](k, Ik) < 0 for all k 2 X(✓k0 ,1], and, from Lemma 5, there is no attack on yH. This
means that ✓k0 2 M. Thus, either ✓̄ > m

0 2 M or ✓̄ > ✓k0 2 M, which implies that
m < ✓̄. ⇤
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A.11 Proof of Theorem 2

Theorem 2. For every partition P, V(P)  V, where

V = lim
m#m

V(Pm),

and thus the Central Bank can achieve a payo↵ arbitrarily close to V.

Proof:

Consider a partition P. From Theorem 1, we can assume that P = P
m = {0,m, 1}.

The proof consists of five steps:

i. if m > m, then m 2M;

ii. for all m
0 < m, there exists m 2M such that V(Pm) > V(Pm

0);

iii. if m > ✓⇤, then V(P✓⇤) > V(Pm);

iv. if m 2 (m,max{✓⇤, ✓̄}), then V(Pm) = (1 �m)v;

v. V(Pm)  (1 �m)v.

When all the claims above are true, we have that V is well defined, no parti-
tion can yield a payo↵ higher than V, and the Central Bank can achieve a payo↵
arbitrarily close to V by setting m arbitrarily close to m. The proofs are presented
below.

i. Since m > m, there exists m
0 2M such that m

0 < m. By Lemma 5, u(m0,1](k, Ik) < 0
for all k 2 X(m0,1]. By Lemma 6, u(m0,1](k, Ik) < 0 for all k 2 X(m,1]. Using Lemma
5, m 2M.

ii. From Lemma 8, we know that m < ✓̄. Then, in the worst equilibrium for
the Central Bank the peg is abandoned when ✓ 2 [0,m]. From Lemma 1,
speculators follow a cuto↵ strategy IkH

after observing yH, where kH = sup{k 2
XyH

: uyH
(k, Ik) � 0}. Given the speculators’ strategy, there exists ✓kH

> m such
that the peg is abandoned if and only if ✓  ✓kH

. Following the arguments
in the proof Theorem 1 (Case 3), ✓kH

2 M and partition P
✓kH = {0,✓kH

, 1} is
preferred to P

m.
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iii. See discussion at the beginning of section 3.2).

iv. From Lemma 7 and the fact that m 2M, there is no attack on (m, 1] and the peg
is abandoned on [0,m]. Therefore,

V(Pm) =
Z 1

m

v d✓ = (1 �m)v.

and
lim
m#m

V(Pm) = (1 �m)v.

v. If m 2 M, then, by the same arguments as in part iv, we have that V(Pm) =
(1�m)v. If m <M, then Lemma 5 implies that there exists ✓k > m such that the
peg is abandoned if and only if ✓  ✓k. In this case, V(Pm)  (1�✓k)v < (1�m)v.

⇤
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